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ON MODELING THE STEP FIXED-CHARGE TRANSPORTATION PROBLEM

Fixed-charge transportation problem (FCTP) deals with determining optimal quantities of
goods to be shipped and the routes to be used to satisfy the customers’ demands at minimal
total cost. The total cost contains a fixed component which is incurred for every route that is
part of the solution along with the variable cost that is proportional to the amount shipped. Step
fixed-charge transportation problem (SFCTP) is a variant of the FCTP where the fixed costs
follow a step function. Staircase cost structure is very common in the shipping industry,
national postal services and couriers, and materials management. In this work, we propose a
MILP model for SFCTP. After explaining the mathematical model in sufficient detail, we
demonstrate its applicability on a small numerical example. Using extensive computational
experiments, we conclude that the problem is a very hard problem with much “higher degree”
of polynomial complexity. We also report that the number of steps in the fixed component
appears to be the dominant factor that significantly affects the computational time. Though the
proposed MILP model is applicable for SFCTP, with minor modifications, it can be generalized
and used for other network optimization problems that warrant modeling of staircase cost
structures.
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INTRODUCTION & REVIEW

Network representation is often the most convenient method for modeling many real world

complex problems arising in application areas such as telecommunications, transportation, and

logistics. An important problem in the network optimization literature is the classical

transportation problem (TP). It is the problem of determining optimal quantities of goods to be

shipped to satisfy the demands at minimal total cost. Owing to its totally uni-modular (TUM)

structure, even large problem instances of TP can be solved as a simple linear programming

problem (LPP) thereby saving precious computational time. As a natural extension of TP, fixed-

charge transportation problem (FCTP) was proposed by Balinski [1]. FCTP accounts for both

fixed and variable costs along the shipping routes. The problem is a proven NP-hard problem

(Hirsch and Dantzig [2], Klose [3]) and has been well researched over the past 50 years. A wide

variety of solution methodologies, both exact and heuristic, are available in the literature to solve

the FCTP. Interested readers can refer to Xie and Jia [4] for a comprehensive literature review on

this problem.

There exist three variants of FCTP in the literature. One of the variants proposed by Kowalski

and Lev [5], christened as the step fixed-charge transportation problem (SFCTP), considers fixed

costs as a step function of the quantity shipped. This results in an objective function with non-

convex piecewise linear costs (also called as staircase costs). It is as shown in Figure 1. Staircase

cost structure is very common in shipping industry (Baumgartner et al. [6]), pricing of national

postal services and couriers (Lapierre et al. [7]) and materials management (Kameshwaran and

Narahari [8]). The second variant proposed by Xie and Jia [4] considers variable costs directly



proportional to the quadratic of its shipping amount and thereby becoming nonlinear. In the third

and last variant, researchers (Jawahar and Balaji [9], Molla-Alizadeh-Zavardehi et al. [10],

Antony Arokia Durai Raj and Rajendran [11]) consider a two stage FCTP that determines the

optimal shipping schedule between supply and demand nodes through a set of intermediate nodes

called distribution centers (DCs) or warehouses. In addition to the fixed cost associated with each

route, the models take into consideration the fixed cost for opening potential distribution centers

(DCs) with capacity constraints.

Fig. 1. Shipping cost structure of SFCTP

By restricting the scope of the current work to the first variant, we extend the work done by

Kowalski and Lev [5] on SFCTP. Network flow problems with piecewise linear costs arise in

many applications. Network loading problem (Magnanti et al. [12], Bienstock and Gunluk [13],

Gabrel et al. [14], Gunluk [15]), facility location problem with staircase costs (Holmberg [16],

Holmberg and Ling [17]), and the merge-in-transit problem (Croxton et al. [18, 19]) are some of

the specific examples. In many cases, staircase cost structures are simply replaced by quite crude

linear approximations or one step fixed costs, due to the difficulty of the problems [17]. On

SFCTP, other than the work done by Kowalski and Lev [5], we are not aware of any published

work in the literature. In their work, after describing the SFCTP, the authors propose two heuristic

procedures for solving the problem. It is noteworthy to mention here that the mathematical

formulation suggested by them has a non-linear objective function which makes the problem

difficult to solve even for simple problem instances and also forbids from using commercially

available optimization solvers such as LINDO, LINGO and IBM CPLEX because of the non-

linearity.



In this work, we propose a mixed-integer linear programming (MILP) model for SFCTP based on

variable disaggregation techniques [20]. The model takes into consideration fixed costs, expressed

as a step function, and variable costs proportional to the quantity shipped on a given route.

Despite the fact that the problem at hand is a proven NP-hard problem, we are interested in

finding out the amenability of the model in real life scenarios as it is intended to be deployed at a

container shipping service provider’s location. Hence, we proceed to investigate a) highest

problem instance of SFCTP that can be solved to optimality within 30 minutes of computational

time b) quality of the lower bounds using linear programming (LP) relaxation and c) effect of

different parameters on the computational time to solve a problem instance to optimality. An

important contribution of this work is the MILP model that can be generalized and applied for

other network optimization problems which warrant the modeling of fixed costs as a piecewise

linear function.

The rest of the paper is organized as follows. Section 2 provides a detailed description of the

proposed mathematical model. Next, in Section 3, we detail the characteristics of test datasets

generated to evaluate the efficacy of the proposed model. Results obtained are summarized in

Section 4 followed by conclusions in Section 5. The proposed mathematical model applied on a

small numerical example is presented in Appendix A.

PROBLEM FORMULATION

Assumptions

1. There exist only one product to be shipped between multiple supply and demand points

2. Total supply is greater than or equal to total demand

3. Fixed costs depend only on the range in which the quantity to be shipped falls. Ranges

(segments or slabs) are predetermined with specific lower and upper bounds which are non-

overlapping and collectively exhaustive for the entire range of the quantity allowed.

4. The segments are the same regardless of the route chosen.

5. Variable costs do not depend on the segments. They depend only on the quantity to be

shipped on any route.



Notation

m = total number of sources

n = total number of destinations

s = total number of segments/slabs/steps

S i = units of output at source i

Dj = demand at destination j

Cij = variable cost of transportation per unit between source i and destinationj

FC
k

ij = fixed cost associated with segment k between source i and destination j

LBk = lower bound on the number of units in segment k

UBk = upper bound on the number of units in segment k

Rk = UB k – LB
k

= range of segment k

Decision variables:

= quantity shipped between source i and destinationj

= quantity shipped from source i to destinationj that falls in segment k

= 1 if qk
ij is positive; 0 otherwise

Mathematical model:
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The objective function (1) minimizes the total cost of transportation between all the supply and

demand nodes. The first component represents variable cost of transportation and the second
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component takes into account the fixed costs for each segment incurred along given route.

Variable Yk
ij is defined as a binary variable and the rest of the variables qk

ij and xij are restricted to

integers. Constraints (2) and (3) are the usual supply and demand constraints. Constraint (4)

disaggregates the quantity shipped between any source and destination pair (i, j) into smaller

quantities for allocating to different segments. Constraint (5) ensures that the allocated quantities,

represented by q
k
ij, always lie within the bounds prescribed for respective segments. To explain

the importance of constraint (6), let us consider the following two cases.

Case I: When the fixed cost associated with each segment follows a monotonically increasing

function i.e., FC
1

< FC
2

< FC
3

…..< FC
s

.

Let us consider a hypothetical numerical example with the following values:

Table 1

Segment
Fixed Cost LB - UB

1 100 0 - 100

2 100 101- 300

3 300 301 - 700

4 400 701 - 1300

From Table 1, FC
1
= 100; FC

2
= 100; FC 3 = 300; FC4 = 300; R

1
=100; R2=200; R3 =400; R4 =600

Let the quantity of shipment between any arc (i, j) be 800 i.e., xij = 800

Expanding constraints (4) and (5) result in the following equations:
1 2 3 4800 = q ij + q ij + q ij +q ij

0 < q1
ij < 100Y

1

ij 0 < q2
ij < 200Y

2

ij 0 < q3
ij < 400Y

3

ij 0 < q4
ij < 600Y

4

ij

As the problem is a minimization problem, to satisfy the above constraints, the solver would

assign the following values:

q 1
ij = 100; q2

ij = 200; q3
ij = 400; q4

ij = 100; and Y 1
ij = Y2

ij = Y3
ij = Y4

ij =1

This implies Y 1
ij > Y2

ij > Y3
ij > Y4

ij which further implies Yk
ij > Yk+1 ij for k = 1…….s

From the above explanation, it is clear that constraint (6) becomes redundant when the fixed costs

for different segments follow a monotonically increasing function.

Case II: Fixed cost associated with each segment does not follow a monotonically increasing

function

Let us take the same example with minor changes in the fixed costs.

FC
1

= 100; FC
2

= 100; FC3 = 50; FC 4 = 25; xij =800; R
1

=100; R2=200; R3 =400; R4 =600

As per constraints (4) and (5): 800 = q 1
ij + q

2
ij + q

3
ij +q

4

ij

0 < q 1
ij < 100Y

1

ij 0 < q2
ij < 200Y

2

ij 0 < q3
ij < 400Y

3

ij 0 < q4
ij < 600Y

4

ij



To take advantage of smaller fixed costs associated with segments 3 and 4, the solver would

assign values as follows: q 1
ij = 0; q2

ij = 0; q3
ij = 200; q4

ij = 600; and Y 1
ij = 0; Y2

ij =0; Y3
ij = Y4

ij =1.

It essentially implies that the solver completely ignores segments 1 and 2 and directly accounts

for fixed costs pertaining to segments 3 and 4. Therefore, the presence of constraint (6) will

overcome this problem by ensuring that fixed cost for segment ‘k’ is accounted for only after

accounting the fixed cost for its preceding segment ‘k-1’.

CHARACTERISTICS OF TEST DATASETS

To evaluate the efficacy of the proposed model, we generated random instances of SFCTP of

varying sizes. The problem size is represented as m x n x s where m and n represent the number of

supply and demand nodes respectively and s represents the number of segments. The variable cost

of transportation along every route is generated within the range [1, 10]. The fixed cost associated

with first segment is generated in the range [50, 100] i.e., FC
1

lies in the range [50,100].

Assuming that the fixed costs follow a monotonically increasing function, for the rest of

segments, FCk is generated using the following expression.

FCk = FC
k-1

x MF where MF is a random number generated between 1 and 3 for k = 2….s (7)

The lower and upper bounds on quantities for different segments are computed using the

following empirical formulae.

Lower bound of first segment i.e., LB
1
= 0 (8)

UB
1

= (minimum demand + maximum demand)/ (2* number of segments) (9)

For the rest of segments k = 2……s,

LB
k
=UB

k-1
+1 (10)

UBk = UB
k-1

x MF where MF is a random number generated between 2 and 4 (11)

Choosing a proper value for upper bound on each segment is important to retain the stair cost

structure of the objective function otherwise the problem will become simple FCTP. Take for

example a two segment problem with demand in the range [25, 50]. Choosing UB
1

> maximum

demand (50) will simply alter the structure of the problem to a FCTP with single fixed cost.

Hence, using expressions (9) and (11), we ensure that majority of the UBk values are deliberately

chosen to be less than the maximum demand value. To validate the data generated, we cross-

checked and found that the values generated by the formulae approximately match with that of the

pricing structure of at least two logistics service providers. Other characteristics such as problem

sizes, number of instances, ranges of supply and demand are tabulated in Table 2.



RESULTS

The models were solved using IBM CPLEX 12.5 optimizer by allowing them to run until the

desired optimal criterion is attained or for 30 minutes, whichever is earlier on an Intel Core 2

Duo, 3 GHz processor with 2 GB of RAM. All times reported are in CPU seconds. The results are

summarized in Table 3. By generating 5 instances of each problem size, a total of 90 problem

instances have been generated. Barring three problem sizes i.e., 20 x 20 x 2, 20 x 20 x3, and 15 x

30 x 3, CPLEX was able to solve all the other problem instances to optimality within 30 minutes.

In these three cases, the solver could not converge to optimality within the set computational time.

It can be observed that as the problem size increases (either number of demand nodes or number

of segments), the computational time required to solve a given instance to optimality increases

exponentially. This reinforces the fact that the problem is a NP-hard problem and very quickly

becomes extremely difficult to solve beyond a particular problem size. Among all the different

parameters, the number of segments appears to be the dominant factor that significantly affects

the computational time. The reason being though the computational time increases with increase

in the number of supply and demand nodes, it can be observed that a marginal increase in the

number of segments i.e., from 2 to 3, drastically increases the computational time. This

phenomenon can be attributed to the step structure of the objective function. CPLEX solver uses

advanced branch-and-bound (B&B) and branch-and-cut (B&C) procedures to solve a given

problem instance to optimality. Fathoming of nodes is an important process in B&B procedures

that directly dictates the computational effectiveness. By increasing the number of steps of

SFCTP, we believe, the B&B tree size also increases exponentially. This in turn makes the solver

take more time to fathom nodes because of the availability of more choices where a superior

solution could be found at each iteration.

Using the proposed MILP model, the highest problem size that can be solved to optimality within

30 minutes is 15 x 15 x 3. Beyond this problem size, CPLEX was not able to converge to

optimality. For all problem sizes, the lower bounds generated using LP-relaxation consistently fell

in the range of 60 – 80% away from the optimum. This inferior quality of LP bounds implies that

the MILP model needs to be augmented with additional “valid inequalities” to strengthen the

formulation.

CONCLUSIONS

Staircase cost structure is very common in the logistics industry. In many practical scenarios,

staircase cost structures are simply replaced by quite crude linear approximations or one step

fixed costs, due to the computational complexity associated with them. In this paper, we have



proposed a MILP model for step-fixed charge transportation problem. After explaining the

mathematical model in sufficient detail, we demonstrate its applicability on a small numerical

example. Using extensive computational experiments, we found that the problem indeed is a “NP-

super hard” problem with much “higher degree” of polynomial complexity. Using the proposed

MILP model, we also learnt that 15 x 15 x 3 is the highest size of the problem instance that can be

solved to optimality within 30 minutes of computational time. We believe the number of

segments appears to be the dominant factor that significantly dictates the complexity of the

problem and affects the computational time. Also, it is observed that the quality of lower bounds

generated using LP relaxation is poor and the formulation needs to be strengthened by adding

valid inequalities. This could be a good starting point for further research on this problem.



Table 2

Characteristics of test datasets

Problem size
( m x n x s)

Number of
instances

Range of supply Range of demand

4 x 4 x 2 5

8 x 8 x 2 5

10 x 10 x 2 5 [25,50] [25,50]

15 x 15 x 2 5

20 x 20 x 2 5

4 x 8 x 2 5

8 x 16 x 2 5

10 x 20 x 2 5
[50,100] [25,50]

15 x 30 x 2 5

4 x 4 x 3 5

8 x 8 x 3 5

10 x 10 x 3 5 [25,50] [25,50]

15 x 15 x 3 5

20 x 20 x 3 5

4 x 8 x 3 5

8 x 16 x 3 5

10 x 20 x 3 5
[50,100] [25,50]

15 x 30 x 3 5



Table 3

Results obtained

Problem size
( m x n x s)

Number of
instances

Computational time (seconds) Average %
deviation of the

lower boundBest case Worst case Average

4 x 4 x 2 5 0.08 0.47 0.164 65.82

8 x 8 x 2 5 0.58 10.08 2.73 69.64

10 x 10 x 2 5 0.84 4.95 3.25 73.96

15 x 15 x 2 5 47.13 918.5 333.64 74.55

20 x 20 x 2 5 * * * *

4 x 8 x 2 5 0.13 0.16 0.138 59.84

8 x 16 x 2 5 1.64 25.16 7.61 71.19

10 x 20 x 2 5 1.78 165.13 72.60 69.76

15 x 30 x 2 5 * * * *

4 x 4 x 3 5 0.13 0.20 0.164 68.74

8 x 8 x 3 5 1.0 3.5 1.9 77.89

10 x 10 x 3 5 1.75 15.56 9.23 79.34

15 x 15 x 3 5 254.88 1768.36 1342.24 78.22

20 x 20 x 3 5 * * * *

4 x 8 x 3 5 0.19 0.42 0.354 71.89

8 x 16 x 3 5 3.11 23.14 10.324 78.64

10 x 20 x 3 5 40.31 671.55 327.97 78.09

15 x 30 x 3 5 * * * *

*- Non convergence because of exceeding stipulated time or memory exhaustion



Appendix A

Kowalski and Lev (2008) used the following numerical example to explain the working of their

heuristics. We also consider the same example for demonstrating our MILP model.

Variable cost matrix

D1 = 10 D2 = 30 D3 = 10

S1 = 15 1 3 1

S2 = 20 2 2 3

S3 = 15 2 1 2

Fixed cost matrix

10; 20 10;10 10;30

10;30 10;20 10;20

10;20 10;30 10;10

Bounds on each segment

Segment LB – UB

1 0 – 5

2 6 – M(=10000)

Proposed MILP model:

Minimize

Z= 1x11+3x12+1x13+2x21+2x22+3x23+2x31+1x32+2x33+10Y111+20Y211+

10Y112+10Y212+10Y113+30Y213+10Y121+30Y221+10Y122+20Y222+10Y123+

20Y223+10Y131+20Y231+10Y132+30Y232+10Y133+10Y233

Subject to

Constraint set (2):

x11+x12+x13<=15

x21+x22+x23<=20

x31+x32+x33<=15

Constraint set (3):

x11 +x21+x31>=10

x12+x22+x32>=30

x13+x23+x33>=10

Constraint set (4):

x11-q111-q211=0

x12-q112-q212=0

x13-q113-q213=0

x21-q121-q221=0

x22-q122-q222=0



x23-q123-q223=0

x31-q131-q231=0

x32-q132-q232=0

x33-q133-q233=0

Constraint set (5):

q111-5Y111<=0

q112-5Y112<=0

q113-5Y113<=0

q121-5Y121<=0

q122-5Y122<=0

q123-5Y123<=0

q131-5Y131<=0

q132-5Y132<=0

q133-5Y133<=0

q211-9995Y211<=0

q212-9995Y212<=0

q213-9995Y213<=0

q221-9995Y221<=0

q222-9995Y222<=0

q223-9995Y223<=0

q231-9995Y231<=0

q232-9995Y232<=0

q233-9995Y233<=0

Constraint set (6):

Y111-Y211>=0

Y112-Y212>=0

Y113-Y213>=0

Y121-Y221>=0

Y122-Y222>=0

Y123-Y223>=0

Y131-Y231>=0

Y132-Y232>=0

Y133-Y233>=0

Binaries

Y111 Y211 Y112 Y212 Y113 Y213

Y121 Y221 Y122 Y222 Y123 Y223

Y131 Y231 Y132 Y232 Y133 Y233



Generals

x11 x12 x13

x21 x22 x23

x31 x32 x33

q111 q211 q112 q212 q113 q213

q121 q221 q122 q222 q123 q223

q131 q231 q132 q232 q133 q233

Solution provided by CPLEX solver is as follows:

x11=5 x12=5 x13=5 x22=20 x31=5

x32=5 x33=5 Y111=1 Y112=1 Y113=1

Y122=1 Y222=1 Y131=1 Y132=1 Y133=1

q111=5 q112=5 q113=5 q122=5

q222=15

q131=5 q132=5 q133=5

Objective function value Z=180

All other variables are 0.

55
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20
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