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A Game-Theoretic Modeling of Deception-based 
Security System with Strategic Signaling 

Abstract. Deception technologies are gaining popularity in the domain 
of cyber-defense. This paper attempts to model deception as a strategic 
decision in a non-cooperative game setting. We have modeled the inter- 
action between cyber security systems and the hacker as an attacker-  
defender game. A costless exponential learning scheme is introduced for 
the attacker wherein the game is played on an abstract network graph. 
The game is simulated on an active directory user network for privi-  
lege escalation attack scenario. Deceptions, in the form of fake users, are 
planted across the network. The strategy of the game lies in the place- 
ment of decoys at a different location in the network to obstruct the at- 
tackers desired path for achieving his objective. The results demonstrate 
that even the simplest deception-based security system significantly slows 
the attacker to achieve his objectives. Moreover, the results suggest that 
the network parameters and cost shading associated with nodes play an 
essential role in deciding the outcome. 

Keywords: Cyber-Security; Game Theory; Deception; Simulation; Attacker- 
Defender Game 



1 Introduction 

Traditional cyber security defense relies on perimeter-based approaches 
(Zaliva, 2008). These approaches utilize anomaly detection systems to su- 
face our dubious event by analyzing security data lakes. Data lakes are 
data stores where logs from different systems inside a security network 
are collected. Security data lakes are huge and munches millions of secu- 
rity events  per second from various data sources. Any anomalous event   
is detected and shown to the security analyst to check the fidelity and 
authenticity of the alert. However,  these systems are not robust due to 
the following reasons: 

1. A large number of false positives (Axelsson, 2000)
2. Capturing, storing and indexing data lake is an expensive and a com-

plex process

Moreover, a large number of false alerts take a toll on the security an- 
alyst, leading to scenarios where real alerts are missed. These systems 
follow a passive defense strategy wherein the objective is to prevent an 
attack. This seldom works as mean time-to-compromise  a target system  
is less and has been steadily decreasing (Leversage and Byres, 2008). The 
traditional network perimeter - where many of these prevention technolo- 
gies are typically deployed - has become porous and is routinely being 
breached. The proliferation of cloud computing, mobility and bring your 
own device (BYOD), and Internet-facing applications have rendered these 
perimeter defenses ineffective (inc, 2017). 

Deception technology is fast emerging as an active form of cyber se- 
curity defense (Mitnick and Simon, 2011; Almeshekah, 2015; Yuill et al., 
2006) and is being used to mitigate above scenarios. Deception technolo- 
gies focus on creating traps (deceptions/decoys) and lures that are de- 
ployed within the existing IT infrastructure. The deceptions used are not 
part of the regular operations but is only revealed during a cyber-attack. 
The attacker or the intruder expend time and effort to locate and access 
deception distributed across the enterprise network. They do so thinking 



 

 
 
 
 

that deceptions are real but in reality are set up specifically to invite an 
attack. Any operation on deception is a positive affirmation of a com- 
promise. In other words, in a deception- based solution, a highly positive 
anomaly announces itself, thus mitigating the false positive deluge (inc, 
2017). 

In this paper, we formulate a non-cooperative attacker-defender game 
to model the interaction between the attacker and defender using decep- 
tion as a tool for active defense. The idea of modeling the interaction 
between hackers and security system as a game is not novel (Zhuang  
et al., 2010; Xu and Zhuang, 2016). However, defining the model of the 
game using deception within a graph framework has not been attempted 
before. In our framework, each atomic deception unit is considered as a 
node in a graph comprising of real service units. We refer to this graph 
as an abstract network graph (ANG). ANG is an isomorphic abstraction 
over the real network graph. Each atomic functional unit forms a part 
of ANG. Thus, a host machine comprising of individual functional units 
forms sub-graph in itself. For example, an enterprise host machine has a 
network card(NC) which is attached to the motherboard, controlled by 
the CPU. NC, motherboard, and CPU may be considered as nodes of an 
enterprise ANG. Any application or process running on this host machine 
will also be part of the ANG. A sample ANG representing different types 
of nodes are shown in Figure 1. We devise strategies for placing decep- 
tions insider ANG to maximize the chances of defender winning. Different 
attack scenarios are modeled and simulated to enumerate different possi- 
bilities attacker might follow. The key idea is to deceive the attacker and 
mislead him, thereby exhausting his resources. 

One of the resources sought after by  attackers is the Active Direc-  
tory (Chadwick, 2005; Metcalf, 2016). Active directory services control 
the access rights for a broad range of directory-based identity-related 
services. To make the modeling more realistic, we chose Active direc-  
tory attacks for game simulation. The attacker tries  to  take  control of  the 
AD through different strategies. We focus our modeling on one form 
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Fig. 1. A sample Abstract Network Graph (ANG) in an Enterprise 

 
 

of privilege escalation using password reset methodology Metcalf (2016). 
This form of attack is commonly known as Reset-the-Password attack. 
The underlying idea is to exploit unauthorized access grant over users 
authentication. To mitigate such an exploitation, we place deceptions in 
the form of fake users with fake credentials to mislead the attacker. We 
present our results and analysis of the simulation of these attacks. 

The key contributions and observations of this work are: 
 

– A novel graph-based approach for the formulation of attacker-defender 
games using deception 

– Empirically shows that deploying deception significantly increases the 
attacker’s work to achieve his goal. 

– Shows that increasing the number of nodes in graph i.e., number of 
users by adding more deceptions is beneficial. 

– Identifies that Graph property plays an important role in the outcome 
of the duel between attacker and defender. 

Even though we model the game for active directory attacks, 
our game model is scalable and robust to model any deception 



 

 
 
 
 

based  defense  strategy. Rest of the paper is as follows: In Section 2,   
we describe the deception and concept behind ANG. We  contextualize  
our work is section 3. The game formulation and encompassing model is 
explained in the Section 4. Section 5 explain our experiment setup. In    
the next section, results and discussion of the simulation are presented. 
Finally concluding the paper in Section 7 with some future pointers. 

 

2 Deception for Active Defense 
 

Deception-based threat detection provides an effective alternative to anomaly 
detection (inc, 2017). Any component in an enterprise network such as 
computer system, service, credential, a data item can be  used  for  de- 
ception based detection. Deception seamlessly blends into the enterprise 
network and can be activated only when required. Deception in enterprise 
security can be categorized into: 

 
– Decoy: A fabricated software or service for the attacker to target such 

as a PHP website. 
– Breadcrumbs: Signals leading to the decoy. For instance, a shared 

folder with credentials leading to a decoy. 
– Baits: Honeytokens in the counterfeit form data or fake credential to   

a service which may be valuable to the attacker. For example, fake 
credit card and personal information of fake users in the enterprise. 

– Lures: It makes a decoy, breadcrumbs, baits more attractive to the 
attacker. For instance a service decoy with factory settings. 

 
Each deception component has a certain form of a signal associated with 
it. For instance, if it is a web server decoy, then there is an acknowledg- 
ment signal for every request posted. Additionally, these components can 
point to another set of services. A web server will have a remote connec- 
tion to database service, which in turn has got its signals. This is true      
for both decoys as well as real services or applications. In terms of the 
signals emitted and interlinked, components in an enterprise network can 



 

 
 
 
 

be considered as a part of a large graph. This network is the abstract net- 
work graph (refer Figure 1). ANG forms the fabric over which deceptions 
can be deployed. Based on what needs to be seen, an underlying signal 
network over ANG could be deployed. 

 

2.1 Active Directory - Privilege Escalation Attack 
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Fig. 2. Privilege escalation using a password reset attack 

 
 

Active Directory (AD) is one of the key IT assets of any organization 
as it contains information of all the IT resources (hosts, servers, printers, 
etc.) and users. It makes user management easier by providing a single 
repository for all the users and IT resources. It provides this service using 
Kerberos Authentication and Single Sign-On (SSO). Kerberos provides 
a user with one set of credentials and grants them access across a range 
of resources and services with that same set of credentials. Attackers 
are primarily after privilege access to AD so that they can identify the 
identity and location of golden assets, for instance enterprise CEO/CFO 
accounts, customer databases, source code and build servers information, 
etc. They primarily use active directory privilege escalation based on the 
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identification and exploitation of unauthorized access grants (Defenses, 
2016). Attackers  use the Reset Password feature to reset the password     
of a targeted user. The reset password feature allows anyone who has    
this permission to instantly reset that account’s password, and login as  
that account. This is a desired feature  as the  IT environment  needs  to  
be maintained and managed by multiple admins, and sometimes the del- 
egated admin needs to reset the password of the admin account for user 
and resource management. This feature is exploited by the attacker for 
privilege escalation. Typically, an attacker gets a domain user-level ac- 
cess via a social engineering-based phishing attack. Then they identify   all 
the users having higher-level access. Using the password reset analysis on 
the delegated admin they escalate the access to the next level. They keep 
on doing this analysis until they get the AD Admin credentials. We 
illustrate this attack in Figure 2. The attacker first compromises Kevin’s 
account who is delegated admin for Mary. Mary is a local IT Admin. 
Using the password reset method, attacker resets Mary’s password and 
compromises Mary’s account. In the next step, the attacker compromises 
Peter’s account using Mary’s account. In the end, the attacker gets AD 
admin access using Peter’s account, which is delegated admin for Sam.   
In the real world, it just takes less than 5 mins for the attacker to do this 
kind of privilege escalation if he knows the attack path, i.e. (Kevin → 
Nancy → Mary → Peter → Sam). There are several tools available 
online that can provide attack graphs for active directory(Robbins, 2016). 
Fig- ure 3 shows the attack scenario in the presence of deception. 
Deception could be of various types including decoy users showing fake 
access at var- ious levels e.g., local admin, domain-level, and admin-level. 
Deception is also provided using various types of breadcrumbs over the 
endpoints, and these breadcrumbs point to decoys. Lures could be 
provided to attract    the attacker towards decoy users and make him 
believe that it is real.   Now when the attacker tries to do privilege 
escalation using the password reset method, he may bump into one of the 
breadcrumbs, and that will increase the Blue teams probability of 
detecting the attacker presence. 



 

 
 
 
 

 
 
 

Fig. 3. Privilege escalation with deception deployed in between. The attacker is forced 
to explore a larger network in this case. 

 

In this paper, we consider the scenario where deception in the form of 
fake users and fake credentials are setup in the AD user network. Using 
this form of deception we model an attacker-defender game in section 4. 

 
3 Related Work 

 
In this section, we contextualize our research with the existing works in 
the literature. 

The use of deception is an age-old one, especially in the area of war- 
fare (Dewar, 1989), counter-terrorism, homeland security (Zhuang and 
Bier, 2011) and so on. Though we can find many descriptive and ana- 
lytical literature concerning deception in a physical and virtual warfare 
scenario, as far as our knowledge, there is no such analytical model that 
characterizes the efficiency of the method of deception in the context of 
cyber attack and defense. Use of deception for active security defense is 
gaining popularity (Lin et al., 2008; Zhang et al., 2003). In this work, we 
employ deception to model attacker-defender interaction. We model the 
use of deception in the cyber network as an attacker-defender game with 



 

 
 
 
 

exponential learning for the attacker and with private information for the 
defender. 

Concept of deception in the context of attacker-defender games have 
been attempted before (Xu and Zhuang, 2016; Zhuang et al., 2010). 
Zhuang et al. (2010) showed that in a multiple period game, deception 
could serve as a cost-effective defense strategy for the defender. Xu and 
Zhuang (2016) assumed that the attacker’s learning is costly, and the cost 
of learning has a significant effect on the equilibrium payoff of both the at- 
tacker and defender. Both of these works are immensely important in the 
area of deception based defense. However, none of the literature that is 
currently available deal with the network structure of the security system. 
Moreover, there is no research available in the domain of cybersecurity, 
which deals with the efficiency of deploying deception based defense sys- 
tem from a game theoretic perspective and considering deception as a 
strategic decision. We approach the problem of determining the effect of 
deception based defense system from a game theoretic perspective. The 
model of the game is explained in detail in the next section. 

 
4 Formulation 

 
We model the event of cyber attack and defense as an attacker-defender 
game that is played on a network of users/processes. We assume that  
in the network of users/processes, there is a process that is of very high 
value, and the attacker is trying to reach that node in the network. Each 
node in the network is characterized by several parameters. Each node is 
initially characterized by a unique ID, that is a proxy of its location in 
the network. The ‘visibility’ of a node is defined as the binary variable 
which decides whether a node is visible to the attacker at a time t or not. 
The parameter ‘operability’ denotes whether a node that is visible to the 
attacker is operable by the attacker or not. Here, by operable, we denote 
the event of usability of the process in the node by the attacker. If the node 
is operable at time t, the attacker gets a positive payoff from the node. 
The operability of any node also decreases exponentially with time. Every 



 

 
 
 
 

node houses a user or a process of the cyber network. Hence, every node 
has a standalone value attached to it. This value is assumed to be the value 
that the attacker of the network will gain, without the knowledge of the 
position of the node in the network, if the node is compromised/hacked  
by the attacker. The position of a node in the network is also another 
important parameter to understand the importance of the node. If a node   
is compromised, its position or connectedness defines how vulnerable the 
node is for the network. Thus, the degree centrality of the node is also an 
important parameter that we  will consider in this model. The properties  
of a node are mathematically formulated in Section 4.1. 

In the context of active directory, nodes represent different users with 
different credentials. Each user is unique, visible only to a unique set of 
users. The operability is in the formability to reset the password. 

The game is being played between two players: an attacker and a 
defender. The attacker enters the network through one node and at each 
time point jumps to another node based on the perceived payoff of the 
destination node. It continues moving through the network till it can find 
the node with the highest standalone value, that we call as treasure node 
in this paper. 

We assume that the attacker has a limited budget, and it stops play- 
ing the game when the budget gets exhausted. The defender tries to stop 
the attacker from reaching the treasure node through mainly two actions. 
Firstly, it deploys deception at some nodes in the network. We explain 
the model of deception in Section 2. Secondly, the defender emits a sig- 
nal about the importance of a node, which may or may not be the real 
importance of the node. This part of the model is explained in Section 
4.3. 

If the attacker reaches a deception node and does not recognize the de- 
ception, it incurs a negative payoff. Also, with every incident of deception, 
the attacker’s ability to recognize a deception increases exponentially. We 
also include another parameter called risk for the attacker in the game. The 
risk of the attacker of being detected increases exponentially with 



 

 
 
 
 

the time spent in the network. We assume that if the attacker does not 
move to another node at some time point, the defender wins the game. 
The expected payoff at any time t in the game is formulated in Section 
4.5. 

 

4.1 Characterization of a node in ANG 
 

Consider a node i in the network. The key identifiers for node i are pre- 
sented below: 

1. Location: (xi, yi) 
2. Visibility at time t: vi(t) ∈ {0, 1} 
3. Operability at time t: ri ∈ {0, 1}, P (ri = 0) = 1 − e−t 

t t 

4. Standalone value: ci 
5. Degree Centrality: Ci 

 

At any time t, if there is a direct edge between node i and node j, then 
 

vi(t) = 1 =⇒ vj(t + 1) = 1 

 
4.2 Modeling Deception 

 
Deception in this game is treated as a simple action that will (by any 
means) stop the attacker from reaping the benefits of an attacked node. 
Deception can be of many types in a real network. For  simplicity,  we  
have considered it to be a binary variable D ∈ {0, 1}. In the context of 
active directory attack, deception exists in the form of fake users with  
fake credentials. 

The key properties of deception in this game are: 
 

1. Probability that an attacker will recognize the deception is P (D). 
P (D) is independent of the node where the attacker is in. 

2. We follow the standard exponential learning equation to model the in- 
crease in recognition probability as the attacker faces more deception. 
We also assume that the attacker learns from both success and failure 
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to recognize earlier deceptions. Probability that the attacker will rec- 
n 

ognize a deception after facing n earlier deceptions is P (Dn) = 1−e
− 

2 
(Leibowitz et al., 2010). 

3. Deploying deception also incurs a cost cD for the defender. 
 

4.3 Cost Signal 
 

Cost Shading The defender will also send a signal about the value or 
importance of each node that is visible to the attacker. The cost signal   
can be the true importance of the node or can be a shaded cost. To define 
the cost signal, we first define a metric  that  quantifies the ‘importance’  
of a node in a network. 

If a node i has a value ci and a degree centrality Ci, then both the 
connectedness and the value contribute in determining the importance 
of the node. The value becomes essential in a standalone manner, which 
signifies the value of the information lost in the process of losing the 
control of the node, while the connectedness means the vulnerability in 
terms of visibility of the rest of the network, once the specific node is 
compromised. We define the importance of a node by formulating it as a 
Cobb-Douglas utility/production function 

Ii = Ciciθ 

 
where θ signifies the relative importance (more commonly referred to as 
elasticity in Cobb-Douglas production functions) of the value of the node 
in relation to the location of the node in contributing to the overall im- 
portance of the node. θ is a property of the network and remains constant 
in a network. 

We define the cost signal ci of node i as 
 
ci = f (Ii) 

 
Where the function f assures the following: 

 
1. The most connected nodes look less attractive to the attacker 
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2. The most precious nodes look less attractive to the attacker 
 

The exact nature of the function f will be derived after defining the 
payoff structure in Section 4.6. 

 

Cost of cost shading: It is only logical to assume that the more impor- 
tant the node is, the more effort is needed to hide it from the attacker. 
Hence, the cost of cost shading can be seen as a function of the difference 
between the shaded cost and the actual importance. We formulate the 
cost of cost shading as 

ci = g(ci − Ii) 

For a basic simple model; we assume g to be a constant multiplier of 0.05 
in the simulation. Thus, 

 

ci = 0.05(ci − Ii) 
 
 

4.4 Strategies 
 

Strategy of the Defender is to choose a deception level (D = 0, or D = 1), 
and a cost signal of node i, ci . Thus, the action space of the Defender is 
AD = {D = 0, D = 1} × {f } 

The strategy of the Attacker is to choose the next node to attack, once 
he is on node i. Symbolically, Ait→jt+1 denotes the action of the attacker 
of attacking node j from node i at time t. Another available action for the 
attacker would be not to attack any more nodes. We denote that action 
by Ait→it+1 . 

The important properties of movement of an attacker are listed as 
below: 

1. Every movement of the attacker between i and j at time t are also 
associated with a time-dependent risk Rt for the attacker. Let us for- 
mulate Rt = α + eβt where α is the initial risk and β is the amplifica- 
tion/dampening coefficient. 
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2. Ait→it+1 can happen when the attacker has no gain in moving forward. 
This denotes two possible situations in this game. Firstly, the attacker 
can be stalled in the middle of a network, which would essentially 
mean that the attack attempt has failed. Second, the attacker may 
choose Ait→it+1 when he got the most important node in the network, 
i.e., when the attack is successful. 

3. Let us denote the set of all nodes in the network as N . So, when an 
equilibrium of this game consists of Ait→i 

 

t+1 , if c
i = max(cj)∀j ∈ N , 

the attacker wins, else, the defender wins. 
 
 

4.5 Expected Payoff Structure 
 

1. Case 1: D = 0 

– No deception. Attacker gets the value  of the node minus the risk,  
if the node is operable. Else, only loses the risk amount. 

 

uA(Ai →j , D j ) = P (rj = 1)(cj+(Ii−ci )−Rt+1)+P (rj = 0)(−Rt+1) 
 

– No deception. Defender loses the node value if the node is operable, 
and also loses the cost of cost shading. 

 

uD(Ai →j , D j ) = P (rj = 1)[−cj ] − cj 
 

2. Case 2: D = 1 

– Deception deployed. If deception is recognized by the attacker, he 
gets the same payoff as no deception. Else, loses the risk amount. 

 
uA(Ait→jt+1 , DDj =1,cj ) = P (D)[uA(Ait→jt+1 , DDj =0,cj )]+(1 − P (D))[−Rt+1] 

– Deception deployed. If deception is recognized and the node is op- 
erable, she loses the value of the node. Also she loses the deception 
cost and the cost of cost shading. 

 

uD(Ai →j , D j ) = P (D)[P (rj = 1)[−cj ]] − cD − cj 
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4.6 Expected Payoff for the Attacker & the structure of f 

When an attacker chooses its next node to attack, it does so by evaluating 
the expected payoff for each of the available nodes, and choosing the best 
one. Hence, the expected payoff for the attacker by choosing any node j 

1 
that is connected to node i will be uA(i → j) =  2 [uA(Ait→jt+1 , DDj =0,cj )+ 
uA(Ait→jt+1 , DDj =1,cj )], as described in section 4.5. 

Upon simplifying, we can rewrite 
 

uA(i → j) = A.(f (Ij)+(Ii−ci ))−2Rt+1, A = {(P (rj 

 
 

= 1)+P (rj 

 
 

= 1).P (D))} 
 

As we want uA(i → j) to be decreasing in Ij in order to make the 
crucial nodes look unattractive to the attacker, we define 

f (Ij) = Imax − Ij 

Where Imax is the importance value of the maximum important node in 
the network. 

 
4.7 Equilibrium Conditions 

 
Looking at it  as  a  2  × 2  game  :  In  order  to  develop the condition of 
a Nash Equilibrium in this game, we can assume that the defender has two 

pure strategies to pursue, i.e. D=0 and D=1, and the attacker also has two 
pure strategies to pursue which are ‘select node j’ and ‘do not select node 
j’. If we can find the condition for a Nash Equilibrium consisting ‘do not 
select node j’ as the attackers strategy, for all nodes directly connected to 

node i, i.e. the originating node, then we can say that such a condition will 
be sufficient for the attacker to stop movement at node i, which will, in 
turn, denote the win of the defender in this game. Attacker’s strategy of 

not selecting node j will essentially mean that another node k will be 
selected. So, from the expected payoff structure at Section 4.5, in order to 

have a Nash Equilibrium consisting of ‘do not 
select node j’, the sufficient conditions are: 

 
uA(Ait→jt+1 , DDj =0,cj ) ≤ uA(Ait→kt+1 , DDj =0,ck ) 
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and  
uA(Ait→jt+1 , DDj =1,cj ) ≤ uA(Ait→kt+1 , DDj =1,ck ) 

s s 

Both of these conditions will be satisfied if and only if 
 

cj ≤ ck,  ∀k ↔ i  &  k /= j (1) 

 
In order to satisfy the condition 4.7, it is imperative that 

 

cj = ck, ∀k ↔ i & k j (2) 
 
 

Also, as we want the attacker to stay in node i, the further condition 
will be 

cj ≤ Ii,  ∀j ↔ i (3) 
 
 

As cj = I 
 
 
max −Ij, the combined condition for having a Nash Equilib- 

rium consisting of the attacker’s strategy that forces the attacker to stay 
at a node i, rather than moving to any node j will be 

cj = ck,  ∀k, j ↔ i  &  k /= j (4) 

Imax − Ij ≤ Ii,  ∀j ↔ i (5) 

As it is evident from Equations 4 and 5, the conditions only depend   
on the ‘arrangement’ of the nodes according to their importance, in a 
specific order. Hence, it is the property of the network that can force this 
equilibrium without any other condition on any other parameter of the 
game. 

 
Looking at it as a 2 × n game Instead of looking at the attacker’s 
choice as a binary one, we can also look at it as a bouquet of nodes to 
choose one from, as its next step in the network. Let us assume there are 
m nodes, j1, j2, ..., jm connected to node i at time t. Without loss of 
generality, we can always assume an order of their importance value as 

Ij1 ≥ Ij2 ≥ ... ≥ Ijm 
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Hence, as  
cjp = I 

 
 
 
max 

 
− Ijp ∀ p ∈ 1, 2, ..., m 

 
we can see that  

cjm ≥ cjm−1 ≥ ... ≥ cj1 

 
It follows that 

 
uA(Ait→jmt+1 , DDjm 

uA(Ait→jmt+1 , DDjm 

=0,cjm ) ≥ uA(Ait→jpt+1 
, DD 

=1,cjm ) ≥ uA(Ait→jpt+1 
, DD 

=0,cjp ) ∀jp ↔ i (6) 

=1,cjp ) ∀jp ↔ i (7) 

 

Thus, we prove from Equations 6 & 7 that with the choice of f in 
Section 4.6, the attacker’s strategy of choosing the node with the lowest 
importance forms the Nash Equilibrium of this game. This equilibrium 
does not stop the attacker from moving forward in the network but defi- 
nitely prevents it from accessing the most critical node in the immediate 
neighborhood. 

It can be said that, theoretically, careful construction of the network 
can force the attacker to stop at a node pre-decided by the defender. 
Nonetheless, for any network, the choice of f is critical, and the choice of 
f used in this game assures that the attacker will choose the least vital 
node to attack at every step in its movement, regardless of the network 
structure. 

 
 

5 Simulation 
 

We set up a simulation framework to demonstrate our formulation for 
Attacker-Defender game. The framework generates a random graph with  
n number of nodes and an edge probability ξ. This graph represents the 
abstract network graph (ANG), where each node in the  graph represents  
a host. Some of these hosts can be deception with fake users and a suite   
of fake services. 
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5.1 Deceptions deployment strategies 
 

Whereas, in the real world, deceptions are deployed on a network based on 
some strategies suitable to it; in this simulation, we deploy deception after 
the generation of a network graph. The framework depicts the real world 
scenario as network graphs  are  generated  randomly,  and  the  selection 
of nodes for deception is dependent on the strategy and budget of the 
defender. Here, we experimented with the following two strategies: 

1. Deploy deception on a fixed number of nodes, randomly. Here, we 
kept it as a percentage of total nodes in the ANG. In real life, it can 
depend on the budget and the cost of deception deployment. 

2. Deploy deception strategically based on the node’s connectivity in the 
network. It is more sensible to deploy deception on nodes with higher 
connectivity in the network as it increases the attacker’s chance to 
stumble upon these nodes. In this simulation; for n nodes, we choose 
deception nodes based on following criteria: 

 

Di = n i 
1, otherwise 

 

There can be many such strategies based on the network properties and 
nodes individual properties. We will discuss these strategies in our future 
work. 

 
5.2 Choice of next step by the Attacker 

The attacker chooses the next node for attack based on their perception of 
payoff. So, at every node n, at time t, the attacker evaluates the payoff for 

1 
all j  directly connected to i as uA(i → j) =  2 [uA(Ait→jt+1 , DDj =0,cj ) + 
uA(Ait→jt+1 , DDj =1,cj )],  as  described  in  section  4.6.  Node  j  with  maxi- 
mum uA(i → j) is then chosen by the attacker. 

In the real world, the attacker would not revisit a node, unless stalled 
on some node. The simulation captures this scenario by keeping track of 
visited nodes. In this case, if the best available node has already been 
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visited, it would select the second best available unvisited node in the 
network. 

 
 

5.3 Computing exact payoff 
 
 

Payoff at each node at time t should be calculated as follows: 
 

1. When Di = 0, and ri = 0 
 

uA = −Rt,  uD = −ci 
 
 

2. When Di = 0, and ri = 1 
 

uA = Ii − Rt,  uD = −Ii − ci 
 
 

3. When Di = 1, Deception is recognized, and ri = 0 
 

uA = −Rt,  uD = −cD − ci 
 
 

4. When Di = 1, Deception is recognized, and ri = 1 
 

uA = Ii − Rt, uD = −Ii − cD − ci 
 
 

5. When Di = 1, Deception is not recognized, and ri = 0 
 

uA = −Rt,  uD = −cD − ci 
 
 

6. When Di = 1, Deception is not recognized, and ri = 1 
 

uA = −Rt,  uD = −cD − ci 



 

c 

 
 
 
 

 

Algorithm 1 Simulation steps ( n, ξ, θ, S, T ) 
1: Generate the network for given n, ξ and θ; assign i for each node 
2:  Assign standalone value ci for each node 
3: Calculate degree centrality Ci for each node 
4: Assign importance value Ii for each node 
5:  Calculate cost of cost shading ci  for each node 
6: First node = node with the lowest importance value 
7: Treasure node = node with the highest standalone value 
8: Deploy deceptions based on the strategy S 
9: t = 1 

10: while t ≤ T do 
11: Calculate the payoff for both the players according to section 5.3 
12:  if the cumulative negative payoff received by the attacker exceeds the attacker’s 

budget then 
13:  Stop and declare defender(D) as winner. 
14: else 
15:  Choose the next node to attack by following section 5.2 
16: end if 
17:  if the cumulative payoff of Defender exceeds the available budget or the selected 

node is the treasure node then 
18:  Stop, declare attacker(A) as winner. 
19: end if 
20: end while 
21: Attacker could not find the treasure in T moves, declare defender as winner. 

 
 

5.4 Experiments 
 

In the game setup, the attacker is declared a winner if either of the fol- 
lowing conditions is met: 

1. Attacker has found the treasure node i.e., has gained access over admin 
of active directory server 

2. Defender has run out of the budget to deploy further deceptions, which 
means the attacker can explore the network as much time as it requires 
to find the treasure node 

While defender wins if either the attacker runs out of the budget or has   
no gain in exploring the network further. 



 

 
 
 
 

The attacker has two constraints to adhere: 
 

1. He/she cannot stay indefinitely: They have only limited time inside  
the enterprise network to avoid detection. Hence, several moves are 
limited, assuming each move takes some time. In this simulation, this 
time is consistent across all the steps. 

2. As the stay continues, the risk of detection increases: Each time the 
attacker stumbles upon a deception node his chances for detection 
increases. 

To observe the effect of network properties on the game, we simu- 
lated the game on various networks with a different number of nodes,  
edge probability ξ and θ. We generated a network for a given number of 
nodes and a given ξ. The game simulation was done on different values  
of θ and with different strategies of deception deployment. Results of the 
simulation are presented in section 6. 

For the simulations, the graph is generated, and the deceptions are 
fixed based on the property of the graph. If there are no deceptions, then 
the attacker will get a higher cumulative payoff at the end of the game.  
We experiment with and without scenario to verify this hypothesis. 

For the next set of experiments, we fix network properties ξ and θ, 
except for the size of the network. We vary the limit on several moves an 
attacker make to find the treasure node. Budgets of attacker and defender 
were also kept fixed. We, then, experimented with different budgets for 
attacker and defender on networks of various sizes. Deception deployment 
is kept constant for each network. 

 
6 Results and Discussion 

 
Table 1 shows results of the simulation with varying degree of network 
size, varying probability of an edge between two nodes, and varying θ. If 
the network of users is not large enough, then the inclusion of deception 
does not increase defenders winning chance. If the users are not that 
connected, then the attacker wins almost every time. From the results, it 



 

 
 
 
 

is evident that θ  is a vital parameter to predict the winner of the game.      
θ  represents the relational importance of the value  of the node against  
the significance of the location of the node. Observing the results across 
different number nodes, one can see network size and property has as an 
effect on deciding the winner. However, if θ is greater than 1, the attacker 
wins in all the simulation runs. 

 
Table 1. Simulation runs for varying number of users, strategies, θ, probability of an 
edge between two users 

 
 Network Size (Total Number of users) 

10 20 30 40 
Probability of an 
edge between any 
two users (ξ ) 

0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 
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Table 2 presents the most likely winner of the game when the available 
moves of the attacker are constrained. This experiment was done to cat- 
egorize Advance Persistent Threat (APT) kind of attack versus Malware 
attacks. Mostly in the APT scenario, the number of lateral movements 
attacker makes is minimalistic to decrease the risk of detection. Again, 
the critical observation is if the network is not large enough, the even 
with a small number of moves, the attacker can win. Even though not 
included in the result tables, we saw that if the attacker has unbounded 
steps and the network is extensive, he/she fails due to budget exhaustion. 



 

 
 
 
 

We saw that network parameters have a significant effect on deciding 
the winner. Table 3 shows how the possibility of winning changes with the 
change of the available budget of the attacker. In certain scenarios, attack- 
ers have  an infinite budget in terms of the tools and resources available.  
In such scenarios, i.e., when the attacker is significantly more ‘wealthy’ 
than the defender, the available budget can overshadow the effect of the 
network size. Also, when the number of moves available to the attacker 
(before being detected) is more, the probability of the attacker winning  
the game increases. 

 

Table 2. simulation runs for a varying number of moves permitted for the attacker to  
go unnoticed for a fixed centrality measure. Here the attacker’s and defender’s budget 
is fixed. 

Number of users 
Number of Moves by Attacker 10 20 30 40 

5 D  D  D D 
 

8 A D D D 
10 A D D D 

As many users A A D D 

 
 
 
 
 

Table 3. Simulation runs for varying budget scenarios. The damage attacker can inflict 
depends on his/her budget. 

 

Number of user 
Scenario  10 20 30  40 

Attacker  Budget >>> Defenders budget A  A  A  A 
Attacker  Budget <<< Defenders budget D  D  D  D 

Attacker  Budget  = Defenders budget A A D D 
    Attacker Budget  Defenders budget A A D D  

 
 
 

Figure 4 and Table 4 shows the (cumulative) attacker payoff at the end 
of the game. The results suggest, perhaps for the first time, that having 



 

 
 
 
 

deception makes the attacker work more to achieve his/her target. This     
is an important finding. 

 
Table 4. Simulation run to track the cumulative attacker payoff in scenarios where  
there is no deception and when there is deception 

 

Number of users 
Deception scenario 10 20 30 40 

No Deception -1016.6 -12832371.7 -65789324.7 -69988662.1 
With Deception    -1247.1 -13921355.4 -67189128.2 -69988671.9 

Generally, when the graph is static, and deception does not provide a 
different ‘fake worldview’ to the attacker but only prevents the attacker 
from gaining access to the node where deception is deployed, even with 
exponential learning capability of the attacker, one can successfully pre- 
vent an attack by creating a large network. 



 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 4. Simulation run to track the cumulative attacker payoff in scenarios where there 
is no deception and when there is deception 

 
 

7 Conclusions & Future Works 
 
 

In this paper, we presented a novel model for attacker-defender games 
using deception-based security. To the best of our knowledge, our work is 
the first attempt to construct a game theoretic model of deception-based 
security. Novelty consisted of formulating the game in the form of an ab- 
stract network graph by strategically deploying the deceptions to exhaust 
the attacker’s resources. Deception in the form of fakes users, and fake 
credentials were planted to defend an active directory privilege attack, 
and game simulations were performed. Our results suggest that the at- 
tackers can be slowed down in achieving his objectives using deceptions. 



 

 
 
 
 

Moreover, results suggest that in achieving his/her target, the attacker 
has to expend more energy. 

We analyzed the simulations over a static network. In reality, this net- 
work is dynamic. This needs to be further investigated along with network 
characteristics that affect the outcome of the game. Also, a majority of 
the networks are star networks, whereas we have simulated our game in 
a random network setting. This needs to be extended for various other 
network architecture. 



 

 
 
 

Bibliography 
 
 

Almeshekah, M. H. (2015). Using deception to enhance security: A Tax- 
onomy, Model, and Novel Uses. PhD thesis, Purdue University. 

Axelsson, S. (2000). The base-rate fallacy and the difficulty of intru- 
sion detection. ACM Transactions on Information and System Security 
(TISSEC), 3(3):186–205. 

Chadwick, D. (2005). Threat modelling for active directory. In Commu- 
nications and Multimedia Security, pages 173–182. Springer. 

Defenses, P. (2016). Privileged access is the new holy-grail for malicious 
perpetrators. Online; accessed 15-June-2017. 

Dewar, M. (1989). The art of deception in warfare. Sterling. 
inc, A. T. (2017). Deception 2.0 for Dummies. John Wiley & Sons. 
Leibowitz, N., Baum, B., Enden, G., and Karniel, A. (2010). The ex- 

ponential learning equation as a function of successful trials results in 
sigmoid performance. Journal of Mathematical Psychology, 54(3):338– 
340. 

Leversage, D. J. and Byres, E. J. (2008). Estimating a system’s mean 
time-to-compromise. IEEE Security & Privacy, 6(1). 

Lin, K., Kyaw, L., et al. (2008). Hybrid honeypot system for network 
security. 

Metcalf, S. (2016). Attack methods for gaining domain admin rights in 
active directory. Online; accessed 15-June-2017. 

Mitnick, K. and Simon, W. L. (2011). The art of deception: Controlling 
the human element of security. John Wiley & Sons. 

Robbins, A. (2016). Bloodhound. Online; accessed 15-June-2017. 
Xu, J. and Zhuang, J. (2016). Modeling costly learning and counter- 

learning in a defender-attacker game with private defender information. 
Annals of Operations Research, 236(1):271–289. 

Yuill, J., Denning, D. E., and Feer, F. (2006). Using deception to hide 
things from hackers: Processes, principles, and techniques. Technical 
report, DTIC Document. 



Zaliva, V. (2008). Firewall policy modeling, analysis and simulation: a 
survey. Source-Forge, Tech. Rep. 

Zhang, F., Zhou, S., Qin, Z., and Liu, J. (2003). Honeypot: a sup- 
plemented active defense system  for  network  security. In  Parallel 
and Distributed Computing, Applications and Technologies, 2003. PD- 
CAT’2003. Proceedings of the Fourth International Conference on, 
pages 231–235. IEEE. 

Zhuang, J. and Bier, V. M. (2011). Secrecy and deception at equilibrium, 
with applications to anti-terrorism resource allocation. Defence and 
Peace Economics, 22(1):43–61. 

Zhuang, J., Bier, V. M., and Alagoz, O. (2010). Modeling secrecy and 
deception in a multiple-period attacker–defender signaling game. Eu- 
ropean Journal of Operational Research, 203(2):409–418. 



Research Office 

Indian Institute of Management Kozhikode  

IIMK Campus P. O.,  

Kozhikode, Kerala, India,  

PIN - 673 570 

Phone: +91-495-2809237/ 238
Email: research@iimk.ac.in 

Web: https://iimk.ac.in/faculty/publicationmenu.php 


	3137Prof.PriyaNair_CaseStudy_Final.pdf
	Zenith Pharma2 - Abstract - Copy.pdf
	Sample working paper.pdf
	293 June Fullpaper.pdf
	Binder1
	WP front page
	LSPI_For_SPSAMDPs

	WP Back page




	Full_File.pdf
	A Game-Theoretic Modeling of Deception-based Security System with Strategic Signaling
	1 Introduction
	Even though we model the game for active directory attacks, our game model is scalable and robust to model any deception

	2 Deception for Active Defense
	2.1 Active Directory - Privilege Escalation Attack

	3 Related Work
	4 Formulation
	4.1 Characterization of a node in ANG
	4.2 Modeling Deception
	4.3 Cost Signal
	4.4 Strategies
	4.5 Expected Payoff Structure
	2. Case 2: D = 1
	4.6 Expected Payoff for the Attacker & the structure of f
	4.7 Equilibrium Conditions

	5 Simulation
	5.1 Deceptions deployment strategies
	5.2 Choice of next step by the Attacker
	5.3 Computing exact payoff
	5.4 Experiments

	6 Results and Discussion
	7 Conclusions & Future Works

	Bibliography
	Abstract.pdf
	A Game-Theoretic Modeling of Deception-based Security System with Strategic Signaling
	1 Introduction
	Even though we model the game for active directory attacks, our game model is scalable and robust to model any deception

	2 Deception for Active Defense
	2.1 Active Directory - Privilege Escalation Attack

	3 Related Work
	4 Formulation
	4.1 Characterization of a node in ANG
	4.2 Modeling Deception
	4.3 Cost Signal
	4.4 Strategies
	4.5 Expected Payoff Structure
	2. Case 2: D = 1
	4.6 Expected Payoff for the Attacker & the structure of f
	4.7 Equilibrium Conditions

	5 Simulation
	5.1 Deceptions deployment strategies
	5.2 Choice of next step by the Attacker
	5.3 Computing exact payoff
	5.4 Experiments

	6 Results and Discussion
	7 Conclusions & Future Works

	Bibliography





