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ABSTRACT
This article aims to remove the apparent conflict between statistical power and
higher allocation to the better treatment, in a particular Ethical-optimal (Et-
optimal) response-adaptive design for continuous responses. An existing criterion
is extended to show that the Et-optimal design could be uniformly superior over the
corresponding optimal design, in finite samples. Further, one of the reasons for why
experimenters prefer the standard randomized control trial over a response-adaptive
trial could be the high variability of patient allocations in the latter. Though there
are many response-adaptive designs in the literature which promise higher alloca-
tion to the superior treatment, this is not always assured. Here we propose a new
criterion, Patients-at-Risk, for evaluating response-adaptive designs, which partly
addresses this problem. Under this new criterion, an algorithm based on the explore-
exploit heuristic is shown to be superior to the Et-optimal design in this particular
context, thus giving a win-win solution for both ethics and statistical power.
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Clinical trials; Ethics; Optimality; Response adaptive designs; Worst-case
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1. Introduction

The main objective of a response-adaptive clinical trial design over a static randomized
control trial (RCT) design is to minimize the number of patients allotted to the inferior
drugs/treatments. This is easier to achieve if, based on the responses, the superior drug
is identified early on during the trial. The problem of balancing both the ethical and
the statistical considerations is extensively studied in the literature (see for example
Rosenberger and Lachin (2015), Atkinson and Biswas (2013), Villar, Bowden, and
Wason (2015) and the more recent proposal of such designs for COVID-19 related
trials by Stallard et al. (2020)).

The first contribution of this article is to resolve, using a finite sample analysis,
the trade-off between statistical power and ethics in two asymptotically optimal de-
signs proposed in the literature. The first design is the one proposed in Biswas and
Bhattacharya (2009) for continuous responses and the other design is its more ethical
version that was proposed subsequently in Biswas and Bhattacharya (2011).

Biswas and Bhattacharya (2009) gave a simple design for sequentially assigning
patients to one of two drugs, with the goal of finding the better drug. Here the re-



sponses from the two drugs correspond to two populations with unknown means µk
and variances σ2k, k = A,B and the drug with the lower µk is desirable. Biswas and
Bhattacharya (2009) obtained their design by minimizing NAψA +NBψB, where NA

and NB refer to the target sample size for the two drugs and ψk refers to a suitable
measure of clinical optimality. This optimal design also covered the earlier designs
of Biswas and Mandal (2004) and Zhang and Rosenberger (2006), as special cases.
For example, in Zhang and Rosenberger (2006) the measure of clinical optimality was
simply µk. Thus they minimized the expected trial outcome through their optimal
design.

Further to this, Biswas and Bhattacharya (2011) proposed an Ethical-optimal (re-
ferred to as Et-optimal henceforth) design, where in addition to the above maxi-
mization, the design also took care of the ethical consideration that not more than
a pre-fixed proportion (≤ 0.5) of patients will be allotted to the inferior drug. Be-
cause of this additional constraint, sometimes Et-optimal had lower statistical power
in deciding the better drug, though it was assigning more patients to the better drug.
In the articles that introduced these designs, it is also shown that both the optimal
and the Et-optimal designs have allocation probabilities that converge to the optimal
value, in the limit. However, the current article is concerned with their finite sample
performances and a dilemma arising from such an analysis.

It is said that higher power of a design benefits future patients whereas increasing
the allocation to superior treatment is useful for current patients in the study. We
can also view this as another manifestation of the basic explore-exploit trade-off that
is discussed in the multi-armed bandit literature (Villar, Bowden, and Wason 2015).
Now, this leads to a difficult dilemma for the experimenter: Should the experimenter
sacrifice the power of the clinical trial for getting a greater number of patients assigned
to the better drug? The current article resolves this dilemma by extending the guideline
given in Paganoni and Secchi (2007).

Though Et-optimal turns out to be superior than the optimal design according to
Paganoni and Secchi (2007), it turns out that for the experimenter, the worst case
performance of Et-optimal could act as a deterrent in using it in a real world setting.
In order to address this, we propose a stricter criterion of Patients-at-Risk or PaR. As
discussed in section 2, this could be a more useful criterion to evaluate the variability
of an adaptive design than the conventional Var(Nk).

The article also proposes a new design, where we combine the optimal design with
the explore-exploit heuristic found in bandit algorithms. This design is shown to per-
form better than Et-optimal design according to the more stricter PaR criterion, in
finite samples. In the rest of the article, section 2 briefly reviews the optimal and Et-
optimal designs and introduces the PaR criterion, while section 3 describes the new
design and section 4 concludes.

2. Outperformance of Et-Optimal

We briefly state the designs of Biswas and Bhattacharya (2009) and its modification
in Biswas and Bhattacharya (2011), before discussing our criterion of comparison.
Consider the testing problem,

H0 : µB ≤ µA versus H1 : µB > µA,
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where µA and µB are the means of the experimental and control drugs respectively,
with the desired drug being the one with the lower mean. The optimal design in Biswas
and Bhattacharya (2009) was obtained from the following optimization problem,

minNAψA +NBψB

subject to
σ2A
NA

+
σ2B
NB

= ` and NA +NB = n.

Solving this yields ρA, the optimal targeted allocation proportion to drug A as,

ρoptA =
σA
√
ψB

σA
√
ψB + σB

√
ψA

. (1)

Zhang and Rosenberger (2006) for example, used a design, where for k = A, B, ψk =

µk, while Biswas and Mandal (2004) used ψk = Φ
(
µk−c
σk

)
, where c is a constant

specified by the experimenter.
This optimal strategy was converted into an ethical-optimal strategy by Biswas

and Bhattacharya (2011) by introducing the following additional constraint to the
optimization problem,(

NA

n
− β

)
I(ψA < ψB) +

(
NB

n
− β

)
I(ψB ≤ ψA) ≥ 0

This constraint ensured that a minimum proportion (β) of patients is assigned to the
superior drug. The new optimal solution became,

ρA =

{
max(ρoptA , β) if ψA < ψB
min(ρoptA , 1− β) otherwise

,

where ρoptA is as given in (1). We refer the reader to the original papers for more details.
Throughout this article, we are assuming that the responses are instantaneous i.e.,

after a drug is administered, the response of a patient is available before the next
patient arrives. Delayed responses can be dealt by applying all the algorithms discussed
in the article only to the available responses. It is also assumed that the responses from
either drug are Normal random variables, as in the original study.

We first report a comparison between the Optimal and Et-Optimal designs for a

few parameter combinations in table 1 using ψk = Φ
(
µk−c
σk

)
. µA is fixed at 10, while

µB is varied. 20,000 simulations were used for each setting, assuming a fixed trial
size of N = 150 patients in each simulation. The first 15% of the patients in every
trial were assigned randomly to either drug, to get initial estimates of the mean and
variance parameters. The remaining patients were assigned as per the above allocation
probabilities, with µk and σk replaced by their corresponding running estimates and
c = 10. Throughout this article, β = 0.55 was used while implementing the Et-optimal
design.

The following test statistic was used to test the null hypothesis,
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Z =
ȲB − ȲA√
σ̂2
A

NA
+ σ̂2

B

NB

,

where Ȳk and σ̂2k are the end of the trial estimates of µk and σ2k, k =A, B, obtained from
the responses of the patients given the corresponding drug. The test was applied at 1%
level so that the difference in powers across various designs can be clearly observed.

Table 1. Power of Optimal and Et-optimal designs. Standard error for each entry is given in the bracket

below the entry.

µB

10 10.2 10.4 10.6 10.8 11

σA = 1, σB = 1

Optimal 0.010 0.097 0.393 0.762 0.958 0.997
(0.001) (0.002) (0.002) (0.002) (0.001) (0.001)

Et-optimal 0.011 0.095 0.371 0.738 0.944 0.995
(0.001) (0.002) (0.002) (0.002) (0.002) (0.001)

σA = 1, σB = 1.5

Optimal 0.011 0.078 0.286 0.614 0.875 0.978
(0.001) (0.002) (0.003) (0.003) (0.002) (0.001)

Et-optimal 0.013 0.070 0.257 0.565 0.835 0.962
(0.001) (0.002) (0.003) (0.003) (0.003) (0.001)

σA = 1.5, σB = 1

Optimal 0.011 0.060 0.213 0.464 0.738 0.914
(0.001) (0.002) (0.002) (0.002) (0.002) (0.002)

Et-optimal 0.012 0.060 0.199 0.456 0.724 0.909
(0.001) (0.002) (0.003) (0.002) (0.002) (0.002)

The critical region of the test uses the normal approximation and it is seen that
the first column in table 1 justifies this approximation. Though the same values of c
and the (µ, σ) combinations from the original papers are used here, it is to be noted

that both the designs are scale and location invariant, when ψk = Φ
(
µk−c
σk

)
. For each

cell in table 1, the proportion of patients assigned to drug A is given in table 2. The
number of simulations for some of the cells were increased in order to bring down the
standard errors and to enable the comparison in table 3, described later in this section.

Tables 1 and 2 show that the optimal design is more powerful, whereas Et-optimal
design is more ethical in terms of allotting more patients to the better drug. Inter-
estingly, this is observed across all the parameter combinations in the table. This
also leads to a basic dilemma for the experimenter. Consider for example, the case of
σA = 1, σB = 1.5 and µB = 10.6. Here the optimal design has 10% higher power than
Et-optimal, but Et-optimal allots 12 more patients for every 100 patients to the better
drug. Now which is preferable: more powerful design or a greater number of patients
to the superior treatment? Ignoring either of them can have serious consequences.

Instead of posing this as a trade-off, this dilemma is resolved using the guideline
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Table 2. Allocation proportion to the better drug (A)

µB

10.2 10.4 10.6 10.8 11

σA = 1, σB = 1

Optimal 0.438 0.449 0.458 0.465 0.473

Et-optimal 0.506 0.527 0.537 0.541 0.542

σA = 1, σB = 1.5

Optimal 0.386 0.394 0.402 0.408 0.414

Et-optimal 0.484 0.511 0.525 0.535 0.538

σA = 1.5, σB = 1

Optimal 0.471 0.479 0.486 0.493 0.499

Et-optimal 0.511 0.526 0.536 0.541 0.544

given in Paganoni and Secchi (2007) with a slight modification. Let τ1 and τ2 be two
response-adaptive designs and let δ = µB − µA. The modified criterion is as follows.
For a given δ, prefer τ2 over τ1 if, τ2 is at least as powerful as τ1 and

q3(τ2, δ) < q3(τ1, δ), (2)

where q3(τ, δ) is the third quartile of NB, the random variable denoting the number
of patients assigned to the inferior drug when τ is used. In general, τ2 dominates τ1, if
(2) happens for every δ, allowing the strict inequality to become an equality in some,
but not all, cases.

In Paganoni and Secchi (2007), this criterion was used to compare a response-
adaptive design (τ) with the static RCT design and τ would be preferred if it is at
least as powerful as the RCT and q3(τ, δ) <

N
2 . The idea of using the third quartile

is to ensure that less than half the patients will be assigned to the inferior treatment
with a high probability. In this paper, the modified criterion is implemented in the
following manner.

Whenever Et-optimal is having lower power than optimal, the trial size for Et-
optimal is gradually increased till the estimated power ± 3 std. error interval becomes
equal for both the designs (up to the second decimal place). For example, for σA =
1, σB = 1.5 and µB = 11, when the trial size was increased to 158, the 3 std. error
interval for the power of the Et-optimal design became (0.97, 0.98), same as that of the
optimal design. This trial size (denoted by n∗) and the corresponding third quartile of
NB is noted and compared with that of the optimal design. Table 3 gives the n∗ and
q3 values. One can also use more decimal places for matching the powers, if required.

All the q3 values reported in this and the other tables were found to be quite stable,
when 20,000 simulations are done for each cell in the table. Table 3 shows that, even
when a larger trial size is needed for Et-optimal to match the power of optimal, number
of patients assigned to the inferior drug by the former design is possibly lower with
a high probability. And this is seen to be true across all the parameter combinations
considered here.

However, one cause of concern is the amount of variability in the empirical distri-
bution of NB. For example, in the case of σA = 1, σB = 1.5 and µB = 10.6, even
though the third quartile for Et-optimal is only 83, there was quite a bit of variability
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Table 3. q3 comparison among the two designs. Et-optimal row contains both n∗ and q3

µB

10.2 10.4 10.6 10.8 11

σA = 1, σB = 1

Optimal 90 88 87 86 85

Et-optimal 150, 80 160, 80 157, 77 155, 75 150, 73

σA = 1, σB = 1.5

Optimal 98 96 95 94 93

Et-optimal 150, 85 163, 84 166, 83 165, 81 158, 77

σA = 1.5, σB = 1

Optimal 85 84 83 82 81

Et-optimal 150, 79 157, 79 152, 75 151, 74 151, 73

beyond this. In particular, the 99.5th percentile in this case was 111, which means if
the clinical trial uses this design, then there is a 1-in-200 chance that more than 110
patients of the total 166 would be assigned to the inferior treatment. This defeats the
main advantage of using response-adaptive designs.

Also, this variability could be one of the reasons why well-intended response-
adaptive designs are not adopted in real settings. Further, the variability on the right-
hand side of the distribution of NB is the real concern and not the entire variability
of NB.

In light of the above, the following stringent modification of (2) is proposed. This is
partly motivated by the idea behind the Value-at-Risk (VaR) measure that is popular
in financial risk management. For a given δ, prefer τ2 over τ1 if,

(a) τ2 is at least as powerful as τ1,
(b) q3(τ2, δ) ≤ q3(τ1, δ) and
(c) PaR99.5(τ2, δ) ≤ PaR99.5(τ1, δ),

where PaR is the acronym for Patients-at-Risk and PaR99.5 is the 99.5-th percentile
of NB. According to this new criterion, τ2 dominates τ1, if the above three conditions
hold for every δ, with a strict inequality in either (b) or (c) for some δ.

The new criterion given above can also be used in the original framework of Paganoni
and Secchi (2007), where a single response-adaptive design, τ , is evaluated against
a static benchmark design. In such a case, τ would be preferred if in addition to
q3(τ, δ) <

N
2 , we also have, without loss of power,

PaR99.5(τ, δ) < (0.5 + ε)N

for every δ, where ε can be specified by the experimenter. For example, in a trial of
150 patients, keeping ε = 2%, would force the response-adaptive design to assign not
more than 78 patients to the inferior drug with a probability of 0.995.
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3. Can the PaR of Et-optimal be improved?

This section shows that it is possible to further improve the worst-case performance of
Et-optimal. Based on the explore-exploit heuristic of bandit algorithms, a modification
of Et-optimal is proposed and is shown to have a uniformly lower PaR, for all the
parameter settings considered in section 2. We call this the Guided Play-the-Winner
(GPW) design and according to this design, the trial is divided in to three stages. The
allocation proportion for these stages is given in table 4.

Table 4. Stages of the GPW design

Stage Proportion of samples Allocation probability for drug A

1 15% 0.5

2 35% ρ̂optA

3 50% ρ̂GPWA

The first two stages are same as the optimal design, described in section 2. In the
third stage, to determine the assignment for the i-th patient, first generate δA,i from

a Bernoulli(ρ̂optA ) distribution (δA,i = 1 corresponds to an assignment to drug A) and
the final assignment δGPWA,i is determined as follows. If δA,i = 1, then

δGPWA,i =

{
δA,i if (ȲA,i < ȲB,i) or (NA,i < NB,i)

Bernoulli(1− γ) otherwise,

where γ is the probability of playing the winner. And if δA,i = 0,

δGPWA,i =

{
δA,i if (ȲB,i < ȲA,i) or (NB,i < NA,i)

Bernoulli(γ) otherwise.

Here Ȳk,i and Nk,i, k = A,B, are the running means and the patient counts before

the i-th patient arrives. Also we have implemented ρ̂optA by using c = (ȲA,i + ȲB,i)/2,
so that the allocation proportion to drug A increases, as the gap between µA and µB
widens.

The rationale for the GPW design is as follows. In the second half of the trial,
the design ’exploits’ (assigns the winning drug with a high probability), if Et-optimal
says so. And if Et-optimal says ’explore’, GPW will do it subject to the condition
that the losing drug doesn’t get more patients than the winner. In other words, the
play-the-winner rule is ”guided” by Et-optimal allocation probabilities.

We report first the power comparison between Et-optimal and GPW designs in
table 5, in the same settings of our previous simulations with γ = 0.95. Table 6 gives
the q3 and PaR99.5 values for both the designs.

Since the power of both Et-optimal and GPW designs are statistically indistinguish-
able, we did not increase the trial size for the design with the lower power, as we did
for table 3. It is seen from tables 5 and 6 that GPW dominates Et-optimal in terms
of q3 and PaR values, across the table. To check whether this conclusion also holds
for a smaller sample size, this experiment was repeated for a trial size of 80 and the
results are given in tables 7 and 8.

For both N = 150 and N = 80, we did not find much difference in the results when
the probability of playing the winner (γ) was varied around 0.95. From the reported
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Table 5. Power of Et-optimal and GPW designs, N = 150

µB

10 10.2 10.4 10.6 10.8 11

σA = 1, σB = 1

Et-optimal 0.011 0.095 0.371 0.738 0.944 0.995
(0.001) (0.002) (0.002) (0.002) (0.002) (0.001)

GPW 0.010 0.099 0.377 0.749 0.949 0.996
(0.001) (0.002) (0.003) (0.003) (0.002) (0.001)

σA = 1, σB = 1.5

Et-optimal 0.013 0.070 0.257 0.565 0.835 0.962
(0.001) (0.002) (0.003) (0.003) (0.003) (0.001)

GPW 0.011 0.072 0.266 0.584 0.846 0.967
(0.001) (0.002) (0.003) (0.003) (0.003) (0.001)

σA = 1.5, σB = 1

Et-optimal 0.012 0.060 0.199 0.456 0.724 0.909
(0.001) (0.002) (0.003) (0.002) (0.002) (0.002)

GPW 0.012 0.060 0.206 0.462 0.735 0.912
(0.001) (0.002) (0.003) (0.003) (0.003) (0.002)

Table 6. q3 and PaR99.5 values, N = 150

µB

10.2 10.4 10.6 10.8 11

σA = 1, σB = 1

Et-optimal 80, 103 75, 98 74, 92 73, 87 73, 86

GPW 75, 101 74, 91 74, 75 74, 75 73, 75

σA = 1, σB = 1.5

Et-optimal 85, 110 78, 108 75, 103 74, 96 73, 90

GPW 75, 109 75, 101 75, 81 75, 75 74, 75

σA = 1.5, σB = 1

Et-optimal 79, 99 76, 96 74, 92 73, 88 73, 85

GPW 75, 98 74, 92 74, 82 73, 75 73, 75

levels in tables 5 and 7, it is observed that the normal approximation for the test
statistic works better for N = 150, while there is a slight inflation of type-I error for
N = 80.

It is seen from these tables that in some cases GPW is able to achieve a PaR
reduction of more than 30%, without any loss of power. And this is achieved in cases
which typically would have called for higher allocation to the inferior drug i.e., when
the inferior drug’s variability is 50% higher than the better drug. Also, the authors
noted that the empirical distribution of NB has become quite skewed under the GPW
design. More particularly, it is only controlling the variability on the right-hand side
of the distribution and thus addresses the typical cause of worry for the experimenter.
For example, the case of N = 80, σA = 1, σB = 1.5, µB = 11, with PaR99.5 = 40,
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Table 7. Power of Et-optimal and GPW designs, N = 80

µB

10 10.2 10.4 10.6 10.8 11

σA = 1, σB = 1

Et-optimal 0.014 0.063 0.199 0.446 0.710 0.901
(0.001) (0.002) (0.003) (0.003) (0.003) (0.002)

GPW 0.015 0.067 0.210 0.457 0.722 0.903
(0.001) (0.002) (0.003) (0.004) (0.003) (0.002)

σA = 1, σB = 1.5

Et-optimal 0.016 0.051 0.147 0.318 0.542 0.757
(0.001) (0.002) (0.003) (0.003) (0.003) (0.003)

GPW 0.014 0.053 0.153 0.329 0.558 0.768
(0.001) (0.002) (0.003) (0.003) (0.003) (0.003)

σA = 1.5, σB = 1

Et-optimal 0.015 0.045 0.118 0.252 0.436 0.634
(0.001) (0.001) (0.002) (0.003) (0.004) (0.003)

GPW 0.013 0.043 0.116 0.252 0.443 0.644
(0.001) (0.001) (0.002) (0.003) (0.004) (0.003)

Table 8. q3 and PaR99.5 values, N = 80

µB

10.2 10.4 10.6 10.8 11

σA = 1, σB = 1

Et-optimal 44, 63 42, 62 41, 60 40, 59 40, 55

GPW 40, 61 40, 58 39, 49 39, 40 39, 40

σA = 1, σB = 1.5

Et-optimal 47, 67 45, 66 43, 65 41, 63 41, 63

GPW 42, 65 40, 61 40, 57 40, 47 39, 40

σA = 1.5, σB = 1

Et-optimal 44, 62 42, 60 41, 58 40, 57 40, 56

GPW 41, 60 40, 57 39, 53 39, 48 39, 41

median (=q3) = 39 and 0.5-th percentile = 21, illustrates this skew.

4. Discussion

Response-adaptive designs are quite popular among researchers working in improving
the design of clinical trials. They could become more popular if their worst-case per-
formance can also be improved along with other performance measures. This is due
to the fact that the experimenter does not have the luxury of conducting multiple
iterations of the same trial. The clinical trial is conducted only once. And the experi-
menter may not want to end up assigning, for example, 150 out of 170 patients to the
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inferior treatment on a bad day. Here we have proposed the PaR criterion to partly
address this issue and suggest that this should also be taken into account while com-
paring different adaptive designs. We also found the GPW design, which is based on
the explore-exploit heuristic of bandit algorithms, to be performing uniformly better
than both optimal and Et-optimal designs in terms of PaR, in all the cases consid-
ered here. In fact, the worst-case gains are as high as 30% in some cases. Besides the
above contribution, the article has also removed a false dichotomy between ethics and
statistical power, in the particular case of optimal and the Et-optimal designs.
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