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Optimum accelerated life test sampling plans for Type-I hybrid censored

Weibull distributed products sold under general rebate warranty

Abstract: In order to reduce avoidably lengthy duration required to test highly reliable products under

usage stress, accelerated life test sampling plans are employed. In this paper, accelerated life test sampling

plans (ALTSP) are developed for Type-I hybrid censored products sold under the general rebate warranty.

The primary decision model proposed in this paper determines ALTSP by minimizing the relevant costs

involved. The optimal solution is attained by utilizing appropriate analysis techniques following a constrained

optimization approach. As a special case, ALTSP for Type-I censoring is obtained using the same approach.

ALTSP under Type-I hybrid censoring using the variance minimization method is also derived. A well-

designed sensitivity analysis is incorporated using a real-life failure dataset pertaining to low-metallic break-

pads to analyze the sensitivity of the optimal solution due to the mis-specification of parameter values. The

model is exemplified using a real-life case.

Keywords: Accelerated life tests, Sampling plans, Weibull distribution, Type-I hybrid censoring, General

rebate warranty, Constrained optimization.

1 Introduction

As an industrial quality control technique, acceptance sampling is commonly used in production units.

According to Wu et al (2015) acceptance sampling plans reduces the gap between the actual and expected

quality of manufactured goods. For products with lifetime as an important quality characteristic, life test

sampling plan is a widely accepted technique to decide the acceptability of a lot. Since the response values

are not observable for all the units under study, hence lifetime data are typically censored. The two most

commonly utilized censoring schemes are Type-I censoring (time-censoring) scheme and Type-II censoring

(failure-censoring) scheme. In Type-I censoring, the test is aborted after a pre-decided time x0; whereas in

Type-II censoring, the termination of the test is subject to failure of a pre-fixed number of items r.

Life test sampling plans using the two aforementioned censoring schemes and their extensions have been

studied extensively in the literature. Schneider (1989) developed Type-II censored life test sampling plans for

products following lognormal and Weibull distributions. Yeh (1994) followed a Bayesian approach to develop



Type-I censored life test sampling plans for products having exponentially distributed lifetimes. Similarly,

Kockerlakota and Balakrishnan (1986), Balasooriya (1995), Balasooriya and Saw (1998), Balasooriya et

al. (2000) etc. have developed life test sampling plans using different combinations of methods, lifetime

distributions, and censoring schemes.

Epstein (1954) introduced hybrid censoring scheme by combining Type-I and Type-II censoring schemes

for the first time. Eventually, the censoring scheme introduced by Epstein (1954) came to be known as

Type-I hybrid censoring scheme. It can be described briefly as follows: Let us consider n identical units are

put on test. Now if X1:n, ..., Xn:n be the ordered lifetimes of the units put on test, then the experiment is

aborted either when a pre-chosen number r < n out of n items has failed or when a pre-determined time

x0 has elapsed. Hence the life test can be terminated at a random time X∗ = min{Xr:n, x0}. One of the

following two types of observations can be witnessed under Type-I hybrid censoring scheme.

Case I: {X1:n < ... < Xr:n} if Xr:n < x0.

Case II: {X1:n < ... < Xd:n < X0} if d+ 1 ≤ r < n and x0 ≤ Xr:n.

Figure 1: Schematic illustration of Type-I hybrid censoring scheme
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Type-I hybrid censoring schemes have been considered by several authors to develop life test sampling

plans at usage stress. Dube et al (2011) developed Type-I hybrid censored sampling plans for products with

lifetimes following lognormal distribution. Subsequently, Bhattacharya et al (2014) and Bhattacharya et al

(2015) used Type-I hybrid censoring scheme to develop life test sampling plans for products with Weibull

distributed lifetimes by optimizing cost and asymptotic variance respectively.

Due to advancements in technology and processes, modern-day products are highly reliable. To test

lifetimes of such products at usage stress is a taxing lengthy practice. Hence, in order to overcome this

hindrance, accelerated life testing is employed to develop life test sampling plans. Several authors have used

accelerated life tests for developing life test sampling plans using Type-I, Type-II and other variants of the



two censoring schemes. Yum and Kim (1990) developed failure censored accelerated life test sampling plan

(ALTSP) for products with exponentially distributed lifetimes. As an extension of Yum and Kim (1990),

Hsieh (1994) developed ALTSPs which minimized the total number of failures at each stress levels. Bai et al

(1993) also obtained ALTSP using Type-II censoring for lognormal and Weibull distributions. Wang (1991)

introduced ALTSP using Type-I censoring which allowed zero failures during the test. Ke (1999) and later

Lu and Rudy (2001) using a similar setup as Wang (1991) developed ALTSPs which allowed more than zero

failures. Seo et al (2009) introduced ALTSPs using both Type-I and Type-II censoring for non-constant

shape parameter. So far, only Kim and Yum (2011) developed ALTSP using Type-I hybrid censoring under

the assumption that acceleration factor between the accelerated and used conditions and the shape parameter

are known.

The study of existing literature reveals that even if several papers developed life test sampling plans

(LTSP) under accelerated life test setting, cost considerations have seldom been made in the process. For

a consumer durable product warranty cost is an indispensable cost. Several papers (Kwon, 1996; Huang et

al, 2008; Tsai et al 2008; Hsieh and Lu, 2013 etc) under usage stress have acknowledged the importance of

warranty cost while designing LTSP. But to the best of our knowledge, no paper so far has included warranty

cost while designing LTSPs under accelerated life test setting. In this paper, we determine ALTSPs in

presence of Type-I hybrid censoring using a cost function approach for products sold under the general rebate

warranty scheme having Weibull lifetimes. ALTSPs for products with Weibull lifetimes in the presence of

Type-I hybrid censoring using asymptotic variance minimization approach has also been obtained. Evidence

from the literature shows that ALTSPs using both the aforementioned approaches have not been studied for

Type-I hybrid censoring scheme. We inculcate a constrained optimization approach to account for producer’s

and consumer’s risk in determining the ALTSPs. The rest of the paper is organized as follows. In Section

2 we discuss in detail the model framework. We describe the relevant costs involved and formulate the

expected cost minimization problem in Section 3. In Section 4, an alternate approach of obtaining ALTSPs

using asymptotic variance minimization is discussed. A well-designed sensitivity analysis is conducted in

Section 5 by introducing a real-life failure dataset pertaining to low-metallic brake pads. A real life case is

illustrated in Section 6. Finally, we put down our conclusion in Section 7.

2 Model framework

2.1 Weibull distributed lifetime

Let the lifetime X of a testing unit follow Weibull distribution at stress si with probability density

function (pdf), fX(x) given by

fX(x) = kλi
kxk−1e−(λix)

k

;x > 0, (2.1)



where k > 0 is the constant shape parameter and λi > 0 is the scale parameter which can be represented

using the following relationship with stress si

ln(λi) = κ0 + κ1g(si). (2.2)

The stress translation function in (2.2) can assume Arrhenius, log-linear, power rule and other relationships

depending on the kind of stress used for testing. For more details refer to Mukhopadhyay and Roy (2016).

The corresponding cumulative distribution function (CDF), FX(x) can be written as

FX(x) = 1− e−(λix)
k

;x > 0. (2.3)

If we consider the transformation T = lnX, the corresponding CDF of the of the extreme value distribution

of T is given by

FT (t) = 1− e−e
t−µi
σ ;−∞ < t <∞, (2.4)

where −∞ < µi <∞ and σ > 0 are the respective location and scale parameters given by µi = − lnλi and

σ = 1
k . The location parameter can be expressed using the standardized stress ξi as

µi = γ0 + γ1ξi; (2.5)

where, ξi = g(si)−g(s0)
g(sH)−g(s0) , γ0 = −(κ0 + κ1g(s0)), and γ1 = −κ1(g(sH)− g(s0)). s0 and sH are used condition

stress and highest stress respectively. Therefore, ξi = 0 when si = s0 and ξi = 1 when si = sH . Also, when

ξi = 0, µ0 = γ0.

2.2 Fisher information matrix

Let X1, X2, ..., Xni be the lifetimes of ni (number of items to be tested for ith stress level) units to be

put on test at stress level si which follow Weibull distribution given by (2.3). Hence, T1, T2, ..., Tni will be

the corresponding log-lifetimes which follow extreme value distribution given by (2.4) at the corresponding

standardized stress level ξi. Suppose the ordered lifetimes of these ni units be given by T1:ni ≤ T2:ni ≤ ... ≤

Tni:ni . If we consider Type-I hybrid censoring framework, then the two random variables representing the

number of failures and log-censoring time can be denoted by D and τ = min(Tr:ni , t0) respectively, where

t0 = lnx0 and x0 is the censoring time. Accordingly, the data can be represented by (T1:ni , T2:ni , ..., TD:ni , D).

The likelihood function is expressed as

Li(µ, σ) ∝
d∏
j=1

fT (tj:ni)(1− FT (τ0))
n−d

, (2.6)

where tj:ni , d, and τ0 are the observed values of Tj:ni , D, and τ respectively. Using results from Park and

Balakrishnan (2009), the Fisher information matrix at ith stress level is obtained as

`i(θ) =

∫ t0

−∞

(
∂

∂θ
lnhT (t)

)́(
∂

∂θ
lnhT (t)

)
r∑
j=1

fj:ni(t)dt; (2.7)



where hT (t) = 1
σ e

t−γ0−γ1ξi
σ and fj:ni(t) = j

( ni
j
)

1
σ e

t−γ0−γ1ξi
σ −(ni−j+1)e

t−γ0−γ1ξi
σ

(
1− e−e

t−γ0−γ1ξi
σ

)j−1
are

the hazard and density function of T and Tj:ni respectively, and θ = (γ0, γ1, σ). The expression for `(θ) is

of the form

`i(θ) =


`11(θ) `12(θ) `13(θ)

`21(θ) `22(θ) `23(θ)

`31(θ) `32(θ) `33(θ)

 ;

where,

`11(θ) =
1

σ2

∫ t0

−∞

r∑
j=1

fj:ni(t)dt,

`22(θ) =
ξi

2

σ2

∫ t0

−∞

r∑
j=1

fj:ni(t)dt,

`33(θ) =

∫ t0

−∞

( t− γ0 − γ1ξi
σ2

+
1

σ

)2 r∑
j=1

fj:ni(t)dt,

`12(θ) = `21(θ) =
ξi
σ2

∫ t0

−∞

r∑
j=1

fj:ni(t)dt,

`13(θ) = `31(θ) =
1

σ

∫ t0

−∞

( t− γ0 − γ1ξi
σ2

+
1

σ

) r∑
j=1

fj:ni(t)dt,

`23(θ) = `32(θ) =
ξi
σ

∫ t0

−∞

( t− γ0 − γ1ξi
σ2

+
1

σ

) r∑
j=1

fj:ni(t)dt.

Let, ni = nπi; where, πi is the proportion of items to be allocated at ith stress level. Therefore, the

Fisher information matrix is obtained as F = n
∑m
i=1 πi`i(θ). Hence, the variance-covariance matrix can be

computed by inverting the Fisher information matrix as

F−1(θ) =


h11(θ) h12(θ) h13(θ)

h21(θ) h22(θ) h23(θ)

h31(θ) h32(θ) h33(θ)

 .

2.3 Acceptance criterion

Since in case of lifetime as a quality attribute, higher the lifetime of the product, better is its quality.

Hence, we only need to be concerned with the lower specification limit (LSL). LSL is the lowest level of

product quality that is within the acceptable range. Suppose the actual one-sided LSL be l pertaining to

items to be tested, then, the items with lifetimes less than l should be considered nonconforming. Since

instead of actual lifetime (X) of the product log-lifetime (T = lnX) is used, therefore, the fraction of

nonconforming items, p, can be written as p = Pr(T ≤ l′), where l
′

= ln l. Using the lot acceptance criterion

derived by Lieberman and Resnikoff (1955) we get the following expression

µ̂0 − kσ̂ > l
′
; (2.8)



where µ̂0 and σ̂ are the maximum likelihood estimates of µ0 and σ respectively and k is the acceptability

constant. The statistic Ŝ = µ̂0 − kσ̂ is asymptotically normal with mean E[Ŝ] = µ0 − kσ and variance

V ar[Ŝ] = h11(θ̂) + k2h33(θ̂) − 2kh13(θ̂), where h11, h33 and h13 are the elements of variance-covariance

matrix and θ̂ = (µ̂0, σ̂). So the standardized variate

U =
µ̂0 − kσ̂ − (µ0 − kσ)√

h11(θ̂) + k2h33(θ̂)− 2kh13(θ̂)
(2.9)

is also asymptotically normal with mean 0 and variance 1. Therefore, the expression for OC curve can be

represented by

L (p) = Pr(µ̂− kσ̂ > l
′
|p)

= 1− Φ
(σ(up + k)√

V

)
;

(2.10)

where, V = h11(θ̂) + k2h33(θ̂)− 2kh13(θ̂) and up = l
′
−µ0

σ is the pth quantile of the standard extreme value

distribution corresponding to the nonconforming fraction p = Pr((T − µ0)/σ ≤ (l
′ − µ0)/σ) and L (p) is

decreasing in p and Φ is standard normal distribution function.

If we consider α and β as producer’s risk and consumer’s risk respectively, then by fixing points (pα, 1−α)

and (pβ , β) on the OC curve we can obtain the value of k.

The expression for k thus obtained can be written as

k =
upαz1−β − upβzα

zα − z1−β
. (2.11)

Also, the following equality is obtained in the process.

V

σ2

(
zα − z1−β
upα − upβ

)2

= 1, (2.12)

where zα and z1−β are αth and (1− β)th quantiles of standard normal distribution and upα and upβ are pα
th

and pβ
th quantiles of the standard extreme value distribution corresponding to the nonconforming fractions

pα and pβ respectively.

3 ALTSP using cost function approach

3.1 Problem formulation

Evidence from the literature points out to four primary cost components that are affected by a life

test sampling plan. The following are the cost components that constitutes the aggregate cost: 〈a〉 the

acceptance cost, 〈b〉 rejection cost, 〈c〉 time-consumption cost, and 〈d〉 inspection cost. In order to formulate

the problem two stress levels are considered, s1 (to be determined using the proposed model) and s2 = sH .

If the products are sold under warranty, the decision to accept a lot is going to affect the warranty cost.



The argument can further be strengthened by the following diagram by Murthy (2007).

Figure 2: Characterization of warranty cost

Manufacturer Customer

Product usage

Product performance

Warranty cost

Product reliabilityWarranty policy

Therefore, warranty cost can be used as a substitute for the cost of acceptance of a lot (Kwon, 1996). The

warranty policy using which the warranty cost is derived for this study is called the general rebate warranty.

General rebate warranty is a combination of two warranty policies, free-replacement warranty and pro-rata

warranty. The mathematical formulation for general rebate warranty is given by the following expression

c∗a(x) =


ca x < w1

ca
w2−x
w2−w1

w1 ≤ x < w2

0 x ≥ w2.

(3.1)

So, if the failure time is less than w1, the cost incurred for free replacement is ca. If the product has failure

time between interval [w1, w2), the cost incurred for pro-rata warranty is in proportion to the difference

between failure time and w2, which is decreasing in nature. If the failure time is beyond w2, no warranty

costs are incurred. Since we use log lifetimes, therefore, according to general rebate warranty policy the cost

of accepting an item with log-lifetime t is

c∗a(t) =


ca t < lnw1

ca
w2−et
w2−w1

lnw1 ≤ t < lnw2

0 t ≥ lnw2.

(3.2)

Hence, the expected warranty cost per unit is given by

w(θ) = ca

(
w2FT (lnw2)− w1FT (lnw1)

w2 − w1
− 1

w2 − w1

∫ lnw2

lnw1

etfT (t)dt

)
. (3.3)

Thus, the expected warranty (acceptance) cost if n out of N items are put on test is obtained as

Cw = (N − n)w(θ)

(
1− Φ

(σ(up + k)√
V

))
. (3.4)



From the literature, rejection cost usually is taken as cost due to units that are not tested (Hsieh and Lu,

2013). Thus, if cr is the cost per unit for the items that are not put on test, then the average cost of rejecting

a lot is given by

Cr = (N − n)crΦ
(σ(up + k)√

V

)
. (3.5)

The expected log-time of the test is given by

E[τ ] = [min(Tr:n, t0)]

= t0P (Tr:n ≥ t0) + E[Tr:n|Tr:n < t0]P (Tr:n < t0)

= t0

(
1−

n∑
j=r

(
n

j

)
FT (t0)

j(
1− FT (t0)

)n−j)
+ r

(
n

r

)∫ t0

0

tFT (t)
r−1(

1− FT (t)
)n−r

fT (t)dt.

(3.6)

Now, if ct be the cost per unit, the expression for expected time consumption cost is given by Ct = ctE[τ ].

Also, if ci is the unit cost of inspection, the average cost of inspection can be written as Ci = nci. Therefore,

the aggregate cost function is

TC(n, r, t0, ξ1, π1) = Cw + Cr + Ct + Ci

= (N − n)w(θ)

(
1− Φ

(σ(up + k)√
V

))
+ (N − n)crΦ

(σ(up + k)√
V

)
+ ctE[τ ] + nci

= (N − n)

(
w(θ) +

(
cr − w(θ)

)
Φ
(σ(up + k)√

V

))
+ ctE[τ ] + nci

Hence, the optimal design problem can be expressed as follows:

minimize TC(n, r, t0, ξ1, π1)

subject to
V

σ2

(
zα − z1−β
upα − upβ

)2

− 1 = 0.

The equality constraint as also shown in (2.12) ensures that the already agreed upon values pertaining to

producer’s and consumer’s risks are being maintained.

3.2 Determining the optimal solution

The optimization problem described in the aforementioned subsection is mixed-integer non-linear in

nature. This dual nature of the problem enhances its complexity. Therefore, in order to reduce its

complexity, instead of using n as a decision variable pn = n
N is used. To retain the integer nature of n, n

is replaced with bp∗nNc, where b.c represents greatest integer or the floor function. Similarly, instead of r

as a decision variable, the degree of censoring, q = 1− r
n is used and r is replaced with b(1− q)nc to retain

its discrete nature. The continuous nature of pn (pn ∈ [0, 1]) and q (q ∈ [0, 1]) transforms the problem to a

nonlinear programming problem. Hence, the problem gets transformed to

minimize TC(pn, q, t0, ξ1, π1)



subject to
V

σ2

(
zα − z1−β
upα − upβ

)2

− 1 = 0.

The solution procedure is summarized using the following algorithm.

Algorithm 1: Finding the optimal design using cost function approach.

Input: p, α, β, pα, and pβ , N .

Output: n∗, r∗, x0
∗, ξ1

∗, π1
∗, and TC∗

1 Define functions fT , FT , and L (p)

2 Fix (α, pα) and (β, pβ) in L (p) to find k and and the constraint function

3 Set w1, w2 and unit costs

4 Consider pn = n
N and q = 1− r

n as decision variables

5 Replace n with bpnNc and r with b(1− q)nc to transform the objective function from

TC(n, r, t0, ξ1, π1) to TC(pn, q, t0, ξ1, π1)

6 Minimize the objective function with respect to the given constraint to find the optimal values of

(pn
∗, q∗, t0

∗, ξ1
∗,π1

∗, TC∗) using non-linear optimization algorithms such as augmented

Lagrangian

7 Obtain n∗ = bp∗nNc, r∗ = b(1− q)n∗c and x0
∗ = et0

∗
to find the optimal design (n∗, r∗, x0

∗, ξ1
∗, π1

∗)

The values of pα and pβ are usually decided jointly by the producer and the consumer. But for the

purpose of our study we have used the values from MIL-STD-105D (U D of Defense, 1963). The optimal

values found using the aforementioned approach is summarized in Table 1.

Table 1: ALTSP using cost function approach for given values of α, β, pα, and pβ

(α, β) (pα, pβ) p∗n n∗ q∗ r∗ ξ1
∗ π1

∗ n1 n2 t0
∗ x0

∗ TC∗

(0.0209, 0.0742) 0.103 52 0.109 46 0.545 0.278 15 37 3.283 26.667 28.568

(0.05, 0.1) (0.0319, 0.0942) 0.112 56 0.140 48 0.676 0.393 22 34 3.292 26.917 28.532

(0.0190, 0.0535) 0.101 50 0.111 45 0.642 0.415 20 30 3.311 27.421 28.577

(0.0209, 0.0742) 0.126 63 0.128 54 0.511 0.326 20 43 3.003 25.145 45.538

(0.1, 0.1) (0.0319, 0.0942) 0.106 53 0.133 46 0.464 0.366 19 34 3.288 26.792 46.032

(0.0190, 0.0535) 0.108 54 0.114 47 0.638 0.485 26 28 3.182 24.093 45.977

The two most extensively used values for (α, β) are chosen from the literature to obtain the ALTSPs. For

numerical illustration, the result summarized in the first row of Table 1 is explained as follows: Consider a

lot of size N = 500. A decision on whether the lot is fit to be accepted has to be made using accelerated life

test with two stress levels. In order to arrive at the decision under the given setting, 52 (n) items are to be

tested. Out of 52 testing units, 15 (n1) are to be tested at the standardized stress level of 0.545 (ξ1
∗) and

the rest of the items (n2 = 37) are to be tested at the highest stress level. The experiment is terminated

either when 46 (r) items fail or when 3.283 (t0) units of time has elapsed.

The solutions summarized in Table 1 are obtained using nloptr package in R. The nloptr package solves



non-linear optimization problems with linear and/or non-linear constraints. The auglag function within

nloptr package uses augmented Lagrangian minimization for optimizing nonlinear objective functions with

constraints. This method modifies the given objective function by combining the constraint function to

it. The modified objective function is then fed to another optimization algorithm. The three most com-

monly used algorithms are COBYLA (Constrained optimization by linear approximation), LBFGS (Limited-

memory (BFGS)) and MMA (Method of moving asymptotes). Detailed understanding of the usage of these

algorithms is discussed in Ypma (2014). An assessment of the performance of these algorithms in terms of

computation time is noted in Table 2.

Table 2: Computation times for COBYLA, LBFGS, and MMA in seconds

(α, β) (pα, pβ) COBYLA LBFGS MMA

(0.0209, 0.0742) 265.54 700.82 640.97

(0.05, 0.1) (0.0319, 0.0942) 296.69 846.95 562.31

(0.0190, 0.0535) 260.06 856.64 648.63

(0.0209, 0.0742) 298.39 808.79 590.57

(0.1, 0.1) (0.0319, 0.0942) 291.28 886.09 562.16

(0.0190, 0.0535) 277.57 871.06 593.10

From Table 2 it is observed that for the given problem, COBYLA performs better in terms of total clock

time. All the subsequent problems discussed in this paper are solved using nloptr package in R.

The main purpose of using accelerated life tests in order to develop life test sampling plans is to reduce

the duration of the tests. In order to ensure that the intended purpose is served, the values of expected

testing times are obtained under the given setup for both accelerated and usage stress settings. The results

outlined in Figure 3 are as desired.

Figure 3: Cost comparison between the two approaches

When r = n, Type-I hybrid censoring scheme transforms to Type-I censoring scheme. Hence as a special



case, the optimum ALTSPs for Type-I censoring scheme is obtained using the given setup. The results

attained are summarized in Table 3.

Table 3: ALTSP using cost function approach for given values of α, β, pα, and pβ

(α, β) (pα, pβ) p∗n n∗ ξ1
∗ π1

∗ n1 n2 t0
∗ x0

∗ TC∗

(0.0209, 0.0742) 0.102 51 0.587 0.489 25 26 3.227 25.225 28.563

(0.05, 0.1) (0.0319, 0.0942) 0.102 51 0.592 0.438 22 29 3.342 28.278 28.572

(0.0190, 0.0535) 0.101 50 0.675 0.397 20 30 3.320 27.671 28.578

(0.0209, 0.0742) 0.116 58 0.613 0.468 27 31 3.096 22.115 45.769

(0.1, 0.1) (0.0319, 0.0942) 0.114 56 0.657 0.388 22 34 3.277 26.499 45.859

(0.0190, 0.0535) 0.106 53 0.648 0.457 24 29 3.199 24.517 46.010

4 ALTSP using variance minimization approach

4.1 Variance minimization without cost constraint

As an alternative approach, modified variance measure proposed by Kundu (2008) is minimized to obtain

the ALTSPs. The measure was originally introduced by Zhang and Meeker (2005) as

V ar[ln X̂m],

where X̂m is the maximum likelihood estimate of the mth quantile of the lifetime distribution. Kundu (2008)

modified this measure to ∫ 1

0

V ar[ln X̂m]dm,

where the integral over [0, 1] represents an aggregate variance of the quantile estimates over all quantile

points. It is important to note that the modified variance measure is not dependent on m but on the decision

variables. ln X̂m can be expressed as ln X̂m = µ̂+ σ̂g1(m), where g1(m) = ln[− ln(1−m)]. Therefore,∫ 1

0

V ar[ln X̂m]dm = h11(θ̂) + h33(θ̂)

∫ 1

0

(
g1(m)

)2
dm+ 2h13(θ̂)

∫ 1

0

(
g1(m)

)
dm. (4.1)

This measure has been used in the literature to obtain life test sampling plans under various censoring

schemes. In the context of Type-I hybrid censoring scheme, Bhattacharya et al (2014) and Bhattacharya et

al (2015) used this measure to develop life test sampling plans. Using this measure, the ALTSP problem

under the given setting is obtained as

minimize

∫ 1

0

V ar[ln X̂m]dm

subject to
V

σ2

(
zα − z1−β
upα − upβ

)2

− 1 = 0.

The solution to the problem, summarized in Table 4, is obtained using a similar approach used in the

previous section. The steps required to obtain the optimal design is mentioned in Algorithm 2.



Table 4: ALTSP using variance minimization approach for given values of α, β, pα, and pβ

(α, β) (pα, pβ) p∗n n∗ q∗ r∗ ξ1
∗ π1

∗ n1 n2 t0
∗ x0

∗ V ar∗

(0.0209, 0.0742) 0.202 101 0.108 90 0.683 0.471 47 54 2.887 17.950 0.137

(0.05, 0.1) (0.0319, 0.0942) 0.203 101 0.103 91 0.472 0.430 43 58 2.998 20.055 0.091

(0.0190, 0.0535) 0.200 100 0.103 89 0.689 0.431 43 57 2.947 19.042 0.113

(0.0209, 0.0742) 0.199 99 0.105 89 0.690 0.371 37 62 2.911 18.382 0.127

(0.1, 0.1) (0.0319, 0.0942) 0.204 102 0.103 91 0.689 0.404 41 61 2.921 18.564 0.116

(0.0190, 0.0535) 0.214 107 0.104 95 0.694 0.468 49 58 2.843 17.162 0.117

Algorithm 2: Finding the optimal design using variance minimization approach.

Input: p, α, β, pα, and pβ , N .

Output: n∗, r∗, x0
∗, ξ1

∗, π1
∗, and V ar∗

1 Define functions fT , FT , and L (p)

2 Fix (α, pα) and (β, pβ) in L (p) to find k and and the constraint function

3 Set w1, w2 and unit costs

4 Consider pn = n
N and q = 1− r

n as decision variables

5 Replace n with bpnNc and r with b(1− q)nc to transform the problem from

minimize
n,r,t0,ξ1,π1

∫ 1

0
V ar[ln X̂m]dm to minimize

pn,q,t0,ξ1,π1

∫ 1

0
V ar[ln X̂m]dm

6 Minimize the objective function with respect to the given constraint to find the optimal values of

(pn
∗, q∗, t0

∗, ξ1
∗,π1

∗, V ar∗) using non-linear optimization algorithms such as augmented

Lagrangian

7 Obtain n∗ = bp∗nNc, r∗ = b(1− q)n∗c and x0
∗ = et0

∗
to find the optimal design (n∗, r∗, x0

∗, ξ1
∗, π1

∗)

It is evident from the tables (Table 1 and Table 3) that the optimum number of items to be tested is

more when obtained using variance minimization approach, whereas the optimum censoring time is less when

obtained using the same.

Figure 4: Comparison of expected testing time



On comparison of the total cost between the two approaches, it is found that the total cost is higher in

case of variance minimization approach. The cost comparison is depicted using Figure 4.

4.2 Variance minimization without cost constraint

It is rationale for a decision maker to use cost as a constraint to negate the possibility of incurring

exceedingly high cost while using variance minimization approach. Therefore, in order to keep a check on

the total cost, the minimization problem discussed the previous subsection is reintroduced by including the

total cost as a constraint. Hence, the problem can be expressed as

minimize

∫ 1

0

V ar[ln X̂m]dm

subject to
V

σ2

(
zα − z1−β
upα − upβ

)2

− 1 = 0,

TC(n, r, t0, ξ1, π1) ≤ C0.

The solution to the problem is obtained using Algorithm 2. The optimal designs determined for different

values of C0 are summarized in Table 4.

Table 5: ALTSP using variance minimization approach with cost constraint for given values of α, β, pα, and

pβ

(α, β)=(0.05, 0.1)

(pα, pβ) C0 p∗n n∗ q∗ r∗ ξ1
∗ π1

∗ n1 n2 t0
∗ x0

∗ V ar∗

20 0.199 99 0.104 89 0.316 0.417 40 59 2.966 19.413 0.148

(0.0209, 0.0742) 25 0.204 102 0.123 89 0.457 0.468 47 55 2.898 18.145 0.145

30 0.208 104 0.105 93 0.685 0.476 49 55 2.873 17.701 0.136

20 0.202 100 0.103 90 0.299 0.398 39 61 3.101 22.229 0.113

(0.0319, 0.0942) 25 0.200 100 0.107 89 0.394 0.418 41 59 3.044 20.998 0.108

30 0.203 101 0.105 90 0.470 0.421 42 59 2.997 20.043 0.091

20 0.201 100 0.101 90 0.302 0.411 40 60 3.001 20.101 0.130

(0.0190, 0.0535) 25 0.198 99 0.104 89 0.475 0.415 40 59 2.964 19.377 0.125

30 0.201 100 0.105 89 0.683 0.431 43 56 2.948 19.080 0.113

(α, β)=(0.1, 0.1)

(pα, pβ) C0 p∗n n∗ q∗ r∗ ξ1
∗ π1

∗ n1 n2 t0
∗ x0

∗ V ar∗

40 0.197 98 0.101 88 0.302 0.396 39 59 2.995 19.996 0.142

(0.0209, 0.0742) 45 0.198 99 0.102 89 0.475 0.417 40 59 2.949 19.087 0.136

50 0.198 99 0.104 88 0.690 0.414 40 59 2.901 18.182 0.128

40 0.201 100 0.101 90 0.303 0.403 40 60 2.945 19.013 0.131

(0.0319, 0.0942) 45 0.201 100 0.111 89 0.457 0.398 40 60 2.946 19.025 0.123

50 0.204 102 0.104 91 0.698 0.412 41 61 2.933 18.785 0.116

40 0.200 100 0.102 89 0.324 0.410 41 59 2.894 18.072 0.138

(0.0190, 0.0535) 45 0.197 98 0.101 88 0.441 0.396 39 59 2.995 19.987 0.130

50 0.200 100 0.101 90 0.695 0.448 45 54 2.834 17.026 0.118



From Table 4 it is observed that as the cost constraint (C0) is increased, the optimum stress level (ξ1
∗)

increases and the optimum variance measure (V ar∗) decreases.

5 Sensitivity analysis and other numerical observations

In this section, sensitivity analysis is performed for the cost minimization approach proposed for finding

ALTSPs for products under warranty. Further, the impact of inclusion of warranty cost on optimal design

is also observed.

While developing ALTSPs, the parameters of the extreme value distribution are to be relied upon.

Hence, to investigate the effect of mis-specification of parameters in the optimum design and the total

cost, we incorporate a sensitivity analysis study. For the purpose of this study, a real life failure dataset

pertaining to low-metallic break pads of a car model is used. Each point of the dataset represents the

number of thousand kilometers traversed before a brake pad fails in a life testing experiment. The data

depicting the failure times (in thousand of kilometers) of the units failed during the life test experiment is

represented as follows:

53.342, 60.122, 54.139, 68.564, 58.448, 61.068, 60.945, 66.850, 53.975, 50.355, 57.675, 37.295, 58.704,

64.134, 59.774, 48.541, 51.080, 44.137, 41.613, 58.459, 50.849, 66.997, 53.925, 63.419, 41.425, 65.482, 72.973,

49.233, 54.527, 52.263, 57.315, 55.766, 62.065, 48.101, 59.625, 71.441, 54.780, 63.143, 66.001, 65.651, 40.370,

57.995, 58.824, 70.545, 68.625, 47.081, 67.548, 62.251, 57.910, and 56.144.

Given the dataset, we estimate the parameter values (µ̂0, σ̂) = (4.114, 0.124) assuming the life-

time to follow Weibull distribution. In order to ensure that the distributional assumption (to arrive at the

estimates) holds true, we draw a PP plot. The PP plot depicted in Figure 5 shows a good fit and hence

validates that the distributional assumption.

Figure 5: PP plot of the dataset using Weibull distribution



To further ensure that the assumption holds true, the Kolmogorov-Smirnov (KS) distance statistic value

between the empirical distribution function and the fitted distribution function is obtained. The value of

KS distance is found to be 0.056 with the associated p-value as 0.9952. ALTSPs are obtained for three

sets of (µ0, σ) values (estimated parameter values, 1.2 × estimated parameter values, and 1.4 × estimated

parameter values) each at two levels of γ1 (0.5 and 0.75). Although the optimal design changes with change

in parameter values, no significant trend or pattern is visible. But a clear trend emerges for the values of

optimal cost which is depicted using Figure 6.

Figure 6: Change in optimal cost due to change in parameters

Figure 6 shows that for each of the three sets of (pα, pβ) values pertaining to (α = 0.05, β = 0.1), the

following trends are visible.

• The optimal cost decreases when the values of µ0 increases keeping the other two parameter fixed.

This trend is evident from the downward sloping lines in the figure.

• The optimal cost increases with the increase in the value of σ when the other parameters are kept

constant. The parallel lines in the figure describes this phenomenon.

• The optimal cost slightly decreases with the increase in γ1 when the other parameters are kept un-



changed. The dotted lines in the figure resembles the optimal cost obtained at a higher value of γ1

which are slightly lower than the respective smooth lines which are at a lower value of γ1.

The results obtained for the aforementioned analysis are summarized in Table 7 in the Appendix.

An important aspect of the proposed approach is the inclusion of warranty cost in the formulation of the

problem. Therefore, the change in optimal design due to inclusion of warranty cost is measured. Figure 7

illustrates the change in optimal sample size and optimal censoring time when the optimal design is obtained

with and without including warranty cost. It is found that exclusion of warranty cost, the optimal sample

size to be tested increases whereas the optimal censoring time decreases.

Figure 7: Change in optimal design due to warranty cost

6 Case illustration

In order to explain the practical use of the model a real life situation is presented using the following

case.

A car company in India decided to switch from high-metallic brake-pads to low-metallic brake-pads. The

decision to make this switch resulted from repeated complaints from the customers regarding noise, vibration

and harshness resulting from metal to metal contact of which also affected the life of high-metallic brake-

pads. The low-metallic brake-pads are expected to improve customer satisfaction by providing better life and

barking performance. The car company ordered the low-metallic brake-pads from one of its suppliers and

also indicated that upon validation of the pad-life all its car models will be using low-metallic brake-pads.

The car company is willing to conduct an accelerated life test at two stress levels in order to ensure that the

intended quality level in terms of lifetime of the pads is maintained since the brake-pads are under warranty.

The following questions are to be answered before conducting the accelerated life test.

• How many items are to be tested?



• At what time the experiment is to be terminated?

• What should be the optimum stress level?

• How many items are to be tested at each stress levels?

Intending to answer the above questions using the proposed model, the following assumptions are made:

• The parameter values (µ0 = 4.11, σ = 0.12, γ1 = 0.50) are known to the company.

• The values of (α, β) and (pα, pβ) are fixed at (0.05, 0.1) and (0.0209, 0.0742) respectively.

The proposed model is used to get the results mentioned in Table 6.

Table 6: Results obtained for the aforementioned problem using cost function approach

p∗n n∗ q∗ r∗ ξ1
∗ π1

∗ n1 n2 t0
∗ x0

∗ TC∗

0.103 51 0.118 45 0.654 0.483 24 27 3.332 28.001 30.84

Using results from Table 6, it is obtained that 51 units are required to be tested. Of the 51 units, 24

units are to be tested at a stress level of 0.654 and 27 units at the highest stress level. The test is terminated

either when 45 items fail or when 28 units of time elapses.

7 Conclusion

In this study a method is proposed to arrive at an optimum ALTSP Under Type-I hybrid censoring.

Weibull lifetime model is considered in the context of this study, however under the ambit of the developed

methodology other lifetime distributions of log-location scale family can also be used. The work tries to

formulate optimum reliability acceptance sampling plans from a management perspective which makes it

valuable in dealing with real life problems pertaining to product quality management. One such real life

situation is illustrated in Section 6. To get further insights from the model a rigorous sensitivity study is

conducted using a real life dataset. The results from the study highlights the importance of the parameters

and accesses the behavior of the optimal cost due to parameter changes. Insights on the behavior of optimal

cost due to change in period of warranty is also highlighted. A significant change in optimal design is

observed after inclusion of warranty cost in the model.

Warranty claims lead to rework, as a result of which cost in terms of efforts, time and money has to be

borne by the company. Hence, for consumer durable products it is important to ensure that the cost due

warranty is induced in designing the life testing plan. Therefore, from quality management perspective this

study takes a small step forward in the direction of addressing a practical problem.
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Appendix

Table 7: Results of sensitivity analysis using brake-pad failure data

.
(µ0, σ, γ1) pn

∗ n∗ q∗ r∗ ξ∗ π∗ n0 n1 t∗0 x∗0 TC∗

(pα, pβ)=(0.0190, 0.05350)

(4.114,0.124,0.50) 0.117 58 0.105 52 0.657 0.461 27 31 3.360 28.802 30.169

(4.114,0.149,0.50) 0.125 62 0.131 54 0.673 0.492 30 31 3.289 26.831 26.019

(4.114,0.174,0.50) 0.112 56 0.117 49 0.639 0.363 20 35 3.181 24.064 22.403

(4.937,0.124,0.50) 0.121 60 0.144 51 0.685 0.316 18 42 4.019 55.679 29.940

(4.937,0.149,0.50) 0.119 59 0.191 48 0.640 0.441 26 33 3.932 50.995 25.159

(4.937,0.174,0.50) 0.123 61 0.109 54 0.567 0.441 27 34 3.876 48.236 21.562

(5.761,0.124,0.50) 0.120 60 0.183 49 0.574 0.419 25 34 4.518 91.665 28.527

(5.761,0.149,0.50) 0.121 60 0.163 50 0.548 0.458 27 33 4.353 77.785 24.322

(5.761,0.174,0.50) 0.113 56 0.125 49 0.663 0.422 24 32 4.308 74.350 20.547

(4.114,0.124,0.75) 0.102 51 0.109 45 0.495 0.443 22 29 3.351 28.527 30.058

(4.114,0.149,0.75) 0.108 54 0.136 46 0.649 0.459 25 29 3.257 25.982 25.918

(4.114,0.174,0.75) 0.106 53 0.110 47 0.648 0.469 25 28 3.213 24.876 22.279

(4.937,0.124,0.75) 0.101 50 0.119 44 0.454 0.383 18 32 4.027 56.121 29.446

(4.937,0.149,0.75) 0.101 50 0.127 44 0.614 0.389 19 31 3.941 51.480 25.057

(4.937,0.174,0.75) 0.106 53 0.113 47 0.598 0.336 17 36 3.905 49.674 21.415

(5.761,0.124,0.75) 0.103 51 0.196 41 0.606 0.439 22 29 4.512 91.192 28.310

(5.761,0.149,0.75) 0.109 54 0.198 44 0.684 0.415 22 32 4.413 82.583 24.123

(5.761,0.174,0.75) 0.107 53 0.101 48 0.639 0.341 18 35 4.354 77.839 20.485

(pα, pβ)=(0.02090, 0.07420)

(4.114,0.124,0.50) 0.103 51 0.118 45 0.654 0.483 24 27 3.332 28.001 30.840

(4.114,0.149,0.50) 0.110 55 0.116 48 0.626 0.393 21 33 3.197 24.459 26.180

(4.114,0.174,0.50) 0.106 53 0.102 47 0.664 0.452 24 29 3.164 23.676 22.771

(4.937,0.124,0.50) 0.101 50 0.100 45 0.681 0.350 17 33 4.001 54.670 29.959

(4.937,0.149,0.50) 0.108 54 0.100 48 0.682 0.415 22 32 3.898 49.329 25.147

(4.937,0.174,0.50) 0.102 51 0.128 44 0.679 0.440 22 28 3.824 45.811 21.572

(5.761,0.124,0.50) 0.103 51 0.124 45 0.690 0.398 20 31 4.452 85.796 28.601

(5.761,0.149,0.50) 0.107 53 0.189 43 0.626 0.316 17 36 4.338 76.579 24.349

(5.761,0.174,0.50) 0.107 53 0.138 46 0.665 0.325 17 36 4.243 69.627 20.311

(4.114,0.124,0.75) 0.106 53 0.115 47 0.661 0.495 26 27 3.332 28.005 30.689

(4.114,0.149,0.75) 0.105 52 0.133 45 0.657 0.484 25 27 3.238 25.505 26.013

(4.114,0.174,0.75) 0.112 56 0.120 49 0.567 0.461 26 30 3.106 22.326 22.536

(4.937,0.124,0.75) 0.103 50 0.102 45 0.687 0.498 25 25 4.025 56.014 29.734

(4.937,0.149,0.75) 0.101 50 0.101 45 0.598 0.389 19 30 3.914 50.108 25.077

(4.937,0.174,0.75) 0.105 52 0.242 40 0.682 0.424 21 31 3.815 45.378 21.301

(5.761,0.124,0.75) 0.101 50 0.220 39 0.599 0.447 22 28 4.485 88.737 28.420

(5.761,0.149,0.75) 0.104 51 0.101 46 0.525 0.452 23 28 4.389 80.595 24.121

(5.761,0.174,0.75) 0.100 50 0.104 44 0.509 0.355 17 32 4.265 71.210 20.125

(pα, pβ)=(0.03190, 0.09420)

(4.114,0.124,0.50) 0.108 54 0.102 48 0.665 0.389 21 33 3.432 30.962 31.894

(4.114,0.149,0.50) 0.109 54 0.104 48 0.674 0.346 18 36 3.273 26.404 26.013

(4.114,0.174,0.50) 0.111 55 0.131 48 0.673 0.483 26 29 3.172 23.855 22.711

(4.937,0.124,0.50) 0.102 50 0.117 44 0.604 0.417 20 30 4.031 56.344 30.439

(4.937,0.149,0.50) 0.102 50 0.113 45 0.643 0.445 22 28 3.994 54.318 25.165

(4.937,0.174,0.50) 0.108 54 0.106 48 0.654 0.476 25 28 3.878 48.339 21.520

(5.761,0.124,0.50) 0.106 52 0.122 46 0.611 0.444 23 29 4.544 94.113 29.465

(5.761,0.149,0.50) 0.102 50 0.232 39 0.679 0.471 24 26 4.461 86.598 24.729

(5.761,0.174,0.50) 0.105 52 0.101 47 0.692 0.424 21 31 4.342 76.906 20.540

(4.114,0.124,0.75) 0.104 52 0.147 44 0.573 0.453 23 28 3.422 30.642 31.151

(4.114,0.149,0.75) 0.108 54 0.112 47 0.582 0.421 22 32 3.331 27.981 25.890

(4.114,0.174,0.75) 0.105 52 0.112 46 0.479 0.446 23 29 3.202 24.594 22.379

(4.937,0.124,0.75) 0.102 51 0.163 42 0.693 0.496 25 26 4.041 56.872 30.271

(4.937,0.149,0.75) 0.102 51 0.255 38 0.637 0.492 25 26 4.002 54.742 24.929

(4.937,0.174,0.75) 0.109 54 0.148 46 0.499 0.484 26 28 3.868 47.885 21.234

(5.761,0.124,0.75) 0.101 50 0.100 45 0.613 0.349 18 32 4.520 91.878 29.153

(5.761,0.149,0.75) 0.103 51 0.108 46 0.663 0.388 20 31 4.477 88.031 24.168

(5.761,0.174,0.75) 0.100 50 0.126 44 0.567 0.475 23 26 4.377 79.602 20.352
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