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 Abstract – In this paper, we develop acceptance sampling plan when the lifetime experiment 

is truncated at a pre-assigned time. The minimum sample size required to ensure a specified 

median life of the experimental unit is provided when the lifetimes of the units follow 

generalized Weibull distribution which exhibits both monotone and non-monotone failure 

rates. The operating characteristic values of the sampling plans as well as the producer’s 

risk are also presented. One data analysis is provided for illustrative purpose. 

Keywords – Acceptance sampling, Failure rates, Generalized Weibull distribution, Life 

test, Type I censoring, Minimum sample size, Producer’s risk 

I.  INTRODUCTION 

Acceptance sampling plan (ASP) plays a crucial role in Statistical Quality Control. It 

is served as a tool in which the consumer decides to accept or to reject a lot of products 

manufactured by the producer, based on the results of a random sample selected from the lot. 

The plan decides the minimum sample size required to draw from the large lot to achieve 

certain acceptance and non-acceptance criteria for the lot. So, an ASP consists of the number 

of units on test (n) and the acceptance number (c) such that if there are at most c failures out of 

n, the lot is accepted. For a given ASP, the consumer's and producer's risk are the probabilities 

that a bad lot is accepted and a good lot is rejected, respectively. Usually, with every acceptance 

sampling plan, the associated consumer's and producer's risks are also presented. For more 

details, one may refer to [1] and [2]. 

        Any life testing experiment is carried out to obtain the lifetime (i.e., time to failure) of an 

item. In practice, the life test is terminated at a pre-fixed time, called truncation time (t), also  
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known as type I censoring, and the number of failures that occurred during the time period is 

recorded. In such an experiment, one may be interested to determine the probability that an 

experimental unit which has satisfactory performance during the time period t is classified as 

a non-defective unit. The acceptance sampling procedures can therefore be applied to life tests. 

        The standard approach to handle this problem is to assume a parametric model for the 

lifetime distribution as it provides insight into characteristics of failure times and hazard 

functions that may not be available with non-parametric methods and then to find the minimum 

sample size required to ensure a certain mean/median life (known as quality parameter) of the 

lifetime distribution of the items in the lot, when the experiment is stopped at a pre-determined 

time t. Extensive work has been done on the ASP, assuming different parametric forms of the 

lifetime. ASP based on truncated life tests for exponential distribution was first discussed in 

[3]. The results were extended for the Weibull distribution in [4]. References [5] and [6] 

provided extensive tables on ASP for gamma, normal and log-normal distributions. References 

[7], [8], [9], [10] and [11] provide the time truncated ASP for half-logistics, log-logistics, 

Rayleigh, generalized Birnbaum-Saunders and generalized exponential distributions 

respectively.  

        The Weibull family of distributions, ubiquitous in reliability and survival studies can 

accommodate only some monotone failure rates. It is inadequate when the true hazard shape is 

especially a bathtub as evident over the life-cycle of the product which involves high initial 

failure rates and eventually high failure rates due to aging and wear-out. The generalized 

Weibull (GW) distribution as proposed in [12] and as analysed later in [13], [14], [15] and [16], 

is shown to model unimodal, bathtub shaped and a broad class of monotone failure rates and 

to fit many real life situations well, compared to the conventional exponential, gamma, Weibull 

or other models as discussed before. Moreover, the distribution generalizes generalized 

exponential distribution (taking β = 1), generalized Rayleigh distribution (taking β = 2), 

Weibull distribution (taking α = 1) and exponential distribution (taking β = 1 and α = 1). As 

the mean of the GW distribution is not in a compact form, but the median is, we have chosen 

median as a better quality parameter than the mean.  

        In this paper, we present a methodology to find the minimum sample size necessary to 

ensure a specified median life based on GW distribution when the life test is terminated at a 

pre-assigned time, t, and when the observed number of failures does not exceed a given 

acceptance number, c. The decision procedure is to accept a lot only if the specified median 

life can be established with a pre-assigned high probability P*, which provides protection to 

the consumer. The life test experiment gets terminated at the time at which (c + 1)st failure is 
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observed or at time t, whichever is earlier. For a given acceptance sampling plan, a good lot 

might be rejected with a non-zero probability and that is known as the producer's risk. For 

different acceptance plans, we present the associated producer's risk also, based on the 

operating characteristic function values. In practice, instead of median life the consumer may 

prefer to characterize the quality based on some other percentile point (may be 75-th percentile 

point). Some examples have been discussed for illustrative purposes. 

. 

II. METHODOLOGY

  A random variable X is said to follow GW distribution [12] with parameters (α, β, λ), 

written as GW(α, β, λ), if the distribution function of X is given by 

𝐹𝐺𝑊(𝑥) = (1 − 𝑒
−(

𝑥

𝜆
)
𝛽

)

𝛼

;  x >  0, ;  λ, β, α >  0  (1) 

where α and β are the shape parameters and λ is the scale parameter. It is observed from [12] 

that the hazard function of the GW distribution depends on α and β. It is decreasing for β < 1, 

α < 1, increasing for β > 1, α > 1, unimodal or decreasing for β < 1, α > 1 and bathtub or 

increasing for β > 1 and α < 1.  The pth percentile point of GW(α, β, λ), say  is given by  

 𝜉𝑝 = 𝜆 [𝑙𝑜𝑔 (
1

1−𝑝
1
𝛼

)]

1

𝛽

.  (2) 

Therefore, the median of GW(α, β, λ) becomes 

 𝜉𝑚 = 𝜆

[
 
 
 
 

𝑙𝑜𝑔

(

 
 1

1 − (
1
2
)

1
𝛼0

)

 
 

]
 
 
 
 

1
𝛽0

,  (3) 

which eventually yields  

𝜆𝑚
0 =

𝜉𝑚
0

[
 
 
 
 

𝑙𝑜𝑔

(

 
 1

1 − (
1
2
)

1
𝛼0

)

 
 

]
 
 
 
 

1
𝛽0

 (4) 
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where 𝜉𝑚
0  is the assured or targeted median of the experiment and 𝜆𝑚

0  is the corresponding value

of the scale parameter λ for given 𝛼 = 𝛼0 and 𝛽 = 𝛽0. It is obvious that for fixed α and β, α and 

β, 𝜉𝑚 ≥ 𝜉𝑚
0   ⟺ 𝜆𝑚 ≥ 𝜆𝑚

0 . Now we develop the ASP for the GW distribution with known 𝛼0

and 𝛽0   to ensure that the median lifetime of the items under study exceeds a pre-determined 

quality provided by the consumer say 𝜉𝑚
0 , equivalently 𝜆 exceeds 𝜆𝑚

0  with a minimum

probability P*. As discussed before, usually the test terminates at a pre-specified time t and the 

number of failures during this time point are noted. Based on the number of failed items, a 

confidence limit (lower) on the median is formed. In the present ASP, the target median is 

accepted, if and only if the number of failures at the end of the time point t does not exceed c, 

the acceptance number. Naturally, if more than c failures already occurs before t, there is no 

point in continuing the test. In this case as soon as (c+1)st failure takes place before time point 

t, the test terminates with the decision not to accept the lot. Under these circumstances, one 

wants to obtain the smallest sample size, n, required to achieve these objectives. 

       The problem can be formulated as follows: given 0<P*<1, 𝜉𝑚
0 , t and c, we are to find out 

the smallest n so that if the observed number of failures does not exceed c, it is ensured that 

𝜉𝑚 ≥ 𝜉𝑚
0   with a minimum probability P* i.e. to obtain n such that the inequality 

∑ (𝑛
𝑖
)𝑝𝑖(1 − 𝑝)𝑛−𝑖 ≤ 1 − 𝑃∗𝑐

𝑖=0                                                   (5)

is satisfied where 

𝑝 = 𝐹𝐺𝑊(𝑡; 𝛼, 𝛽) = (1 − 𝑒
−(

𝑡

𝜆𝑚
)
𝛽

)

𝛼

.  (6) 

  Note that p is monotonically increasing in 
𝑡

𝜆𝑚
for fixed α and β, i.e. 𝐹𝐺𝑊 (

𝑡

𝜆
) ≤ 𝐹𝐺𝑊 (

𝑡

𝜆𝑚
) 

for 𝜆 ≥ 𝜆𝑚
0  or equivalently, 𝜉𝑚 ≥ 𝜉𝑚

0 . The operating characteristic (OC) function of the

sampling plan (𝑛, 𝑐,
𝑡

𝜆𝑚
0 ) provides the probability of accepting the lot. For the above ASP, this 

probability is given by 𝑂𝐶(𝑝) = ∑ (𝑛
𝑖
)𝑝𝑖(1 − 𝑝)𝑛−𝑖𝑐

𝑖=0  for 𝜆 ≥ 𝜆𝑚
0 . On the other hand, the ratio of

the true median and the assured median can be found out under the same ASP when the 

producer’s risk (say, γ) which is the probability of rejection of the lot when 𝜆 ≥ 𝜆𝑚
0 , is also

given. The producer’s risk is given by γ= ∑ (𝑛
𝑖
)𝑝𝑖(1 − 𝑝)𝑛−𝑖𝑛

𝑖=𝑐+1 . For the given sampling plan, 

and for given γ, one can obtain the minimum value of 
𝜆

𝜆𝑚
0  or, equivalently 

𝜉

𝜉𝑚
0 , for which 

𝑝 = (1 − 𝑒
−(

𝑡

𝜆𝑚
)
𝛽0

)

𝛼0

= (1 − 𝑒
−(

𝑡

𝜆𝑚
0 ∗

𝜆𝑚
0

𝜆
)
𝛽0

)

𝛼0

  (7) 

satisfies the inequality 
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∑ (
𝑛

𝑖
)𝑝𝑖(1 − 𝑝)𝑛−𝑖

𝑛

𝑖=𝑐+1

≤ 𝛾. 

 

III.  RESULTS 

 

A.  Description of Tables 

 

        Given 𝛼 = 𝛼0, 𝛽 = 𝛽0 and assured median 𝜉𝑚
0 , we obtain 𝜆𝑚

0  from (4), calculate 
𝑡

𝜆𝑚
0  for 

given t and then get p from (6). Substituting p in (5), we get minimum sample size, n, required 

to attain the assured median life 𝜉𝑚
0  with probability atleast P*. GW distributed lifetime having 

α = 1.5, 𝛽 = 0.5, with non-monotone hazard rate is considered for illustrative purposes 

throughout the paper. Table 1 provides the minimum value of n for which the present time 

truncated ASP is satisfied. We have considered P* = 0.90, 0.95 and 
𝑡

𝜆𝑚
0  = 0.628, 1.571, 2.356, 

3.927, 4.712 as found in [5], [6], [8] and [10] which will make the comparison easier. The 

Operating characteristic function values for the same plan for different values of P* and are 

presented in Table 2. Table 3 represents the minimum ratio of the true median life to the assured 

median life for the acceptance of a lot with the producer's risk 0.05. 

        Let us describe the tables with the following illustrations.  

        In Table 1, when P* = 0.90, 
𝑡

𝜆𝑚
0  = 1.571, c = 2, the corresponding value of n is 7. It implies 

that out of 7 items, if 2 items fail before time point t, then a 90% upper confidence interval of 

λ will be (
𝑡

1.571
, ∞). In other words, if out of 7 items, less than or equal to 2 items fail before 

time point t, then we can accept the lot with probability 0.90 with the assurance that 

𝜆 ≥
𝑡

1.571
 ⟺ 𝜉𝑚 ≥

𝑡

1.571

[
 
 
 
 

𝑙𝑜𝑔

(

 
 1

1 − (
1
2)

1
1.5

)

 
 

]
 
 
 
 

1
0.5

= 0.023 𝑡. 

       In Table 2, when P* = 0.90, 
𝑡

𝜆𝑚
0 =1.571, c = 2, the corresponding operating characteristic 

function value is 0.9703 when 
𝜆

𝜆𝑚
0 = 4. It implies, if one accepts the above time truncated ASP, 

i:e: the lot is accepted if out of 7 items, less than or equal to 2 items fail before time point t, 

then if 𝜆 ≥
4𝑡

1.571
 𝑜𝑟 𝜉

𝑚
≥ 4 ∗ 0.023 𝑡, then the lot will be accepted with probability at least 

0.9703. 
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 In Table 3, we obtain 
𝜉

𝜉𝑚
0  for the acceptance of a lot with the producer's risk 0.05. In this 

case for example, when the consumer's risk is 10%, i:e: P* = 0.90, c = 2, 
𝑡

𝜆𝑚
0 =1.571, the tabular 

value of 
𝜉

𝜉𝑚
0 = 7.64. It implies if 𝜉𝑚 ≥ 7.64 ∗ 0.023 𝑡¸ then with n = 7 (as obtained from Table 

1) and c = 2, the lot will be rejected with probability less than or equal to 0.05. 

 

 

B. Data Analysis 

 

 Here we consider the data set on lifetime of 50 devices as presented in [12] which is shown 

to fit by GW distribution well. The maximum likelihood estimates of the parameters α, β and 

λ are found to be 0.146, 4.69 and 91.023 respectively. Suppose, the assured median life is 22 

units and the truncation time is 16 units. With P*=0.90, Let us design a time truncated ASP for 

the given data set on lifetime. Using the estimated values of the parameters and equation (4), 

we obtain 

                      𝜆𝑚
0 =

22

[𝑙𝑜𝑔(
1

1−(
1
2
)

1
0.146

)]

1
4.69

= 60.48482  and hence 
𝑡

𝜆𝑚
0 = 0.264.  

For 
𝑡

𝜆𝑚
0 = 0.264, P* = 0.90, we obtain n = 81 when c = 15. Therefore, if the number of failures 

before t = 16 units, is less than or equal to 15, we can accept the lot with the assured median 

level 22 units, with probability 0.90. Since the number of failures before t = 16 units is 13, 

therefore we can accept the lot with the above specifications. 

C. Tables 

 

Table1. 

Minimum sample size necessary to assure that the median life exceeds a given value 𝜆𝑚
0 , with 

probability P* and the corresponding acceptance number, c, using binomial probabilities 

 

 𝑡

𝜆𝑚
0     

P* c 0.628 1.571 2.356 3.141 3.972 4.712 

0.90 0 

1 

5 

9 

3 

5 

2 

4 

2 

4 

2 

4 

  2 

  3 
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2 

3 

4 

5 

6 

7 

8 

9 

10 

12 

15 

18 

21 

24 

27 

30 

33 

36 

7 

9 

11 

13 

15 

17 

19 

21 

23 

6 

8 

10 

12 

13 

14 

16 

17 

19 

5 

7 

9 

10 

12 

13 

15 

16 

17 

5 

6 

8 

10 

11 

12 

14 

15 

16 

  4 

  5 

  7 

  9 

 10 

 11 

 13 

 14 

 15 

0.95 0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

6 

10 

14 

17 

20 

23 

27 

30 

33 

36 

39 

4 

6 

8 

11 

13 

15 

17 

19 

21 

23 

24 

3 

5 

7 

9 

11 

12 

14 

16 

17 

19 

21 

3 

4 

6 

8 

9 

11 

12 

14 

16 

17 

18 

2 

4 

6 

7 

9 

10 

11 

13 

14 

16 

17 

2 

4 

5 

7 

8 

9 

11 

12 

14 

15 

16 

 

 

 

Table2. 

OC values for the time truncated ASP (n, c, 
𝑡

𝜆𝑚
0 ) for a given P* and 

𝑡

𝜆𝑚
0 , when c=2. 

 𝜆

𝜆𝑚
0    

P* n 𝑡

𝜆𝑚
0    2 4 6 8 

0.90 12 

7 

6 

5 

5 

4 

0.628 

1.571 

2.356 

3.141 

3.972 

4.712 

0.9487 

0.6560 

0.3839 

0.2713 

0.1096 

0.1041 

0.9982 

0.9703 

0.9034 

0.8423 

0.6889 

0.6270 

0.9998 

0.9955 

0.9816 

0.9648 

0.9122 

0.9103 

1 

0.9990 

0.9952 

0.9900 

0.9718 

0.9735 
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0.95 14 

8 

7 

6 

6 

5 

0.628 

1.571 

2.356 

3.141 

3.972 

4.712 

0.9237 

0.5618 

0.2624 

0.1436 

0.0460 

0.0441 

0.9971 

0.9562 

0.8552 

0.7518 

0.5519 

0.5393 

0.9997 

0.9932 

0.9704 

0.9382 

0.8544 

0.8422 

0.9999 

0.9984 

0.9921 

0.9817 

0.9500 

0.9435 

 

Table 3: Minimum ratio of true median life to specified median life for the acceptance of a lot 

with producer's risk of 0.05 

 𝑡

𝜆𝑚
0   

P* c 0.628 1.571 2.356 3.141 3.972 

0.90 0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

7.23 

6.32 

5.68 

5.22 

4.96 

4.54 

3.98 

3.63 

2.25 

1.20 

1.93 

9.68 

8.88 

7.64 

6.74 

6.02 

5.74 

4.87 

4.21 

3.52 

2.36 

1.99 

12.23 

10.56 

9.31 

8.86 

7.95 

6.21 

5.62 

5.01 

4.11 

3.16 

2.13 

15.36 

11.52 

9.65 

9.21 

8.26 

7.33 

5.85 

5.22 

4.32 

3.65 

2.20 

18.63 

12.35 

10.13 

9.68 

8.56 

7.66 

6.14 

5.96 

4.47 

3.95 

2.36 

0.95 0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

9.42 

6.58 

5.95 

5.47 

5.11 

4.82 

4.23 

3.95 

2.68 

1.43 

1.99 

8.82 

8.14 

7.85 

6.92 

6.66 

5.89 

4.92 

4.56 

3.76 

2.58 

2.25 

14.56 

11.22 

9.64 

8.99 

8.05 

6.62 

5.79 

5.28 

4.45 

3.39 

2.31 

17.68 

11.92 

9.85 

9.47 

8.68 

7.34 

6.06 

5.78 

4.60 

3.87 

2.43 

19.87 

12.54 

10.32 

9.86 

8.72 

7.86 

6.35 

6.12 

4.75 

4.17 

2.56 

 

 

IV. DISCUSSION 
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        In any acceptance sampling plan, it is crucial to determine the minimum sample size 

required to draw from a large lot of items for the acceptance or rejection of the lot subject to 

attaining an assured average life of the items for given consumer’s risk. We have proposed 

such an ASP for generalized Weibull distribution here which exhibits both monotone and non-

monotone failure rates as opposed to some other standard distributions used in the literature to 

model lifetime of items.  

. 

 

V.  CONCLUSION 

  

        We have considered the acceptance sampling plan based on type I censoring in this paper 

for the generalized Weibull distribution. We have assumed that the shape parameters are known 

and presented the table for the minimum sample size required to assure a certain median life of 

the experimental units. We have also presented the operating characteristic function values and 

the associated producer's risks along with the minimum ratio of the true median life to the 

assured median life. The current plan is able to produce similar tables for other pairs of shape 

parameters and other percentiles also.  We have provided examples to illustrate the tables and 

demonstrate the plan though a real data. Moreover, the proposed ASP generalizes similar plans 

with exponential, Weibull, generalized exponential and generalized Rayleigh distributions. As 

future research problems, one can think of applying other censoring schemes in ASP or using 

Bayesian ASP in the current life testing procedure.  
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