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Abstract 

 In this paper, we study stochastic comparisons of parallel systems having log-Lindley 
distributed components. These comparisons are carried out with respect to reversed hazard rate 
and likelihood ratio ordering. 
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1 Introduction

In reliability optimization and life testing experiments, many times the tests are censored

or truncated when failure of a device during the warranty period may not be counted or items

may be replaced after a certain time under a replacement policy. Moreover, many reliability

systems and biological organism including human life span are bounded above because of test

conditions, cost or other constraints. These situations result in a data set which is modeled by

distributions with finite range (i.e. with bounded support) viz. power function density, finite

range density, truncated Weibull, beta, Kumaraswamy and so on (see for example, Ghitany [5],

Lai and Jones [10], Lai and Mukherjee [11], Moore and Lai [17] and Mukherjee and Islam [18]).

Recently, Gómez et al. [6] introduce the log-Lindley (LL) distribution with parameters

(σ, λ), written as LL(σ, λ), as an alternative to the beta distribution with the probability density

function given by

f(x;σ, λ) =
σ2

1 + λσ
(λ− log x)xσ−1; 0 < x < 1, λ ≥ 0, σ > 0, (1.1)

where σ is the shape parameter and λ is the scale parameter. This distribution with a simple

expression and nice reliability properties, is derived from the generalized Lindley distribution

as proposed by Zakerzadeh and Dolati [21], which is again a generalization of the Lindley

distribution as proposed by Lindley [14]. The LL distribution exhibits bath-tub failure rates

and has increasing generalized failure rate (IGFR). This distribution has useful applications

in the context of inventory management, pricing and supply chain contracting problems (see,

for example, Ziya et al. [22], Lariviere and Porteus [12] and Lariviere [13]), where a demand

distribution is required to have the IGFR property. Moreover, it has application in the actuarial

context where the cumulative distribution function (CDF) of the LL distribution is used to

distort the premium principle (Gómez et al. [6]). The LL distribution is also shown to fit rates

and proportions data better than the beta distribution (Gómez et al. [6]).

Order statistics play an important role in reliability optimization, life testing, operations

research and many other areas. Parallel and series systems are the building blocks of many

complex coherent systems in reliability theory. While the lifetime of a series system corresponds

to the smallest order statistic X1:n, the same of a parallel system is represented by the largest

order statistic Xn:n. Although stochastic comparisons of order statistics from homogeneous

populations have been studied in detail in the literature, not much work is available so far

for the same from heterogeneous populations, due to its complicated nature of expressions.

Such comparisons are studied with exponential, gamma, Weibull, generalized exponential or

Fréchet distributed components with unbounded support. One may refer to Dykstra et al. [2],

Misra and Misra [16], Zhao and Balakrishnan ([23]), Torrado and Kochar [20], Kundu and

Chowdhury [8], Kundu et al. [9], Gupta et al. [7] and the references there in. Moreover, not

much attention has been paid so far to the stochastic comparison of two systems having finite

range distributed components. The notion of majorization (Marshall et al. [5]) is also essential
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to the understanding of the stochastic inequalities for comparing order statistics. This concept is

used in the context of optimal component allocation in parallel-series as well as in series-parallel

systems, allocation of standby in series and parallel systems, and so on, see, for instance, El-

Neweihi et al. [3]. It is also used in the context of minimal repair of two-component parallel

system with exponentially distributed lifetime by Boland and El-Neweihi [1].

In this paper our main aim is to compare two parallel systems in terms of reversed hazard

rate order and likelihood ratio order with majorized scale and shape parameters separately,

when the components are from two heterogeneous LL distributions as well as from the multiple

outlier LL random variables. The rest of the paper is organized as follows. In Section 2, we

have given the required notations, definitions and some useful lemmas which have been used

throughout the paper. Results related to reversed hazard rate ordering and likelihood ratio

ordering between two order statistics Xn:n and Yn:n are derived in Section 3.

Throughout the paper, the word increasing (resp. decreasing) and nondecreasing (resp.

nonincreasing) are used interchangeably, and < denotes the set of real numbers {x : −∞ < x <

∞}. We also write a
sign
= b to mean that a and b have the same sign. For any differentiable

function k(·), we write k′(t) to denote the first derivative of k(t) with respect to t.

2 Notations, Definitions and Preliminaries

For an absolutely continuous random variable X, we denote the probability density func-

tion, the distribution function and the reversed hazard rate function by fX(·), FX(·), and

r̃X(·) respectively. The survival or reliability function of the random variable X is written

as F̄X(·) = 1− FX(·).
In order to compare different order statistics, stochastic orders are used for fair and rea-

sonable comparison. In literature many different kinds of stochastic orders have been developed

and studied. The following well known definitions may be obtained in Shaked and Shanthiku-

mar [19].

Definition 2.1 Let X and Y be two absolutely continuous random variables with respective

supports (lX , uX) and (lY , uY ), where uX and uY may be positive infinity, and lX and lY may

be negative infinity. Then, X is said to be smaller than Y in

(i) likelihood ratio (lr) order, denoted as X ≤lr Y , if

fY (t)

fX(t)
is increasing in t ∈ (lX , uX) ∪ (lY , uY );

(ii) hazard rate (hr) order, denoted as X ≤hr Y , if

F̄Y (t)

F̄X(t)
is increasing in t ∈ (−∞,max(uX , uY )),

which can equivalently be written as rX(t) ≥ rY (t) for all t;
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(iii) reversed hazard rate (rhr) order, denoted as X ≤rhr Y , if

FY (t)

FX(t)
is increasing in t ∈ (min(lX , lY ),∞),

which can equivalently be written as r̃X(t) ≤ r̃Y (t) for all t;

(iv) usual stochastic (st) order, denoted as X ≤st Y , if F̄X(t) ≤ F̄Y (t) for all

t ∈ (−∞,∞).

In the following diagram we present a chain of implications of the stochastic orders, see, for

instance, Shaked and Shanthikumar [19], where the definitions and usefulness of these orders

can be found.

X ≤hr Y
↑ ↘

X ≤lr Y → X ≤st Y.
↓ ↗

X ≤rhr Y
It is well known that the results on different stochastic orders can be established on

using majorization order(s). Let In denotes an n-dimensional Euclidean space where I ⊆ <.

Further, let x = (x1, x2, . . . , xn) ∈ In and y = (y1, y2, . . . , yn) ∈ In be any two real vectors with

x(1) ≤ x(2) ≤ · · · ≤ x(n) being the increasing arrangements of the components of the vector x.

The following definitions may be found in Marshall et al. [15].

Definition 2.2 The vector x is said to majorize the vector y (written as x
m
� y) if

j∑
i=1

x(i) ≤
j∑
i=1

y(i), j = 1, 2, . . . , n− 1, and
n∑
i=1

x(i) =
n∑
i=1

y(i).

Definition 2.3 A function ψ : In → < is said to be Schur-convex (resp. Schur-concave) on In

if

x
m
� y implies ψ (x) ≥ (resp. ≤) ψ (y) for all x, y ∈ In.

Notation 2.1 Let us introduce the following notations.

(i) D+ = {(x1, x2, . . . , xn) : x1 ≥ x2 ≥ . . . ≥ xn > 0}.

(ii) E+ = {(x1, x2, . . . , xn) : 0 < x1 ≤ x2 ≤ . . . ≤ xn}.

Next, two lemmas are given which will be used to prove our main results. The first one can

be obtained by combining Proposition H2 of Marshall et al. ([15], p. 132) and Lemma 3.2 of

Kundu et al. ([9]) while the second one is due to Lemma 3.4 of Kundu et al. ([9]).
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Lemma 2.1 Let ϕ(x) =
∑n

i=1 gi(xi) with x ∈ D+, where gi : R → R is differentiable, for all

i = 1, 2, . . . , n. Then ϕ(x) is Schur-convex (Schur-concave) on D+ if, and only if,

g′i(a) ≥ (resp. ≤) g′i+1(b) whenever a ≥ b, for all i = 1, 2, . . . , n− 1,

where g′(a) = dg(x)
dx

∣∣
x=a

.

Lemma 2.2 Let ϕ(x) =
∑n

i=1 gi(xi) with x ∈ E+, where gi : R → R is differentiable, for all

i = 1, 2, . . . , n. Then ϕ(x) is Schur-convex (Schur-concave) on E+ if, and only if,

g′i+1(a) ≥ (resp. ≤) g′i(b) whenever a ≥ b, for all i = 1, 2, . . . , n− 1,

where g′(a) = dg(x)
dx

∣∣
x=a

.

3 Main Results

For i = 1, 2, . . . , n, let Xi (resp. Yi) be n independent nonnegative random variables

following LL distribution as given in (1.1).

If Fn:n (·) and Gn:n (·) be the distribution functions of Xn:n and Yn:n respectively, where

σ = (σ1, σ2, . . . , σn), θ = (θ1, θ2, . . . , θn), λ = (λ1, λ2, . . . , λn) and δ = (δ1, δ2, . . . , δn), then

Fn:n (x) =
n∏
i=1

xσi (1 + σi (λi − log x))

1 + λiσi
,

and

Gn:n (x) =
n∏
i=1

xθi (1 + θi (δi − log x))

1 + δiθi
.

Again, if r̃Xn:n and r̃Yn:n are the reversed hazard rate functions of Xn:n and Yn:n respectively, then

r̃Xn:n (x) =

n∑
i=1

σi
x

(
1− 1

1 + σi (λi − log x)

)
, (3.1)

and

r̃Yn:n (x) =

n∑
i=1

θi
x

(
1− 1

1 + θi (δi − log x)

)
. (3.2)

The following two theorems show that under certain conditions on parameters, there exists

reversed hazard rate ordering between Xn:n and Yn:n.

Theorem 3.1 For i = 1, 2, . . . , n, let Xi and Yi be two sets of mutually independent random

variables with Xi ∼ LL (σi, λi) and Yi ∼ LL (θi, λi). Further, suppose that σ,θ,λ ∈ D+ or

σ,θ,λ ∈ E+. Then,

σ
m
� θ implies Xn:n ≥rhr Yn:n.
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Figure 1: Graph of F3:3(x)
G3:3(x)

Proof: Let gi(y) = y
x

(
1− 1

1+y(λi−log x)

)
. Differentiating gi(y) with respect to y, we get

g
′
i(y) =

1

x

(
1− 1

(1 + y (λi − log x))2

)
,

giving

g
′
i(σi)− g

′
i+1(σi+1) =

(1 + σi (λi − log x))2 − (1 + σi+1 (λi+1 − log x))2

x ((1 + σi (λi − log x)) (1 + σi+1 (λi+1 − log x)))2 .

So, if σ,λ ∈ D+ (resp. E+), then g
′
i(σi) − g

′
i+1(σi+1) ≥ (≤) 0. Then, by Lemma 2.1 (Lemma

2.2), r̃Xn:n (x) is Schur convex in σ, proving the result. 2

The counterexample given below shows that the ascending (descending) order of the components

of the scale and shape parameters are necessary for the result of Theorem 3.1 to hold.

Counterexample 3.1 Let Xi ∼ LL (σi, λi) and Yi ∼ LL (θi, λi) , i = 1, 2, 3. Now, if (σ1, σ2, σ3) =

(1, 1, 5) ∈ E+, (θ1, θ2, θ3) = (1, 2, 4) ∈ E+ and (λ1, λ2, λ3) = (4, 3, 0.2) ∈ D+ are taken, then

from Figure 1, it is clear that F3:3(x)
G3:3(x) is not monotone, giving that X3:3 �rhr Y3:3, although

σ
m
� θ.

Theorem 3.1 guarantees that for parallel systems of components having independent LL

distributed lifetimes with common scale parameter vector, the majorized shape parameter vec-

tor leads to larger system’s life in the sense of the reversed hazard rate ordering. Now the

question arises−what will happen if the scale parameter λ majorizes δ when the shape pa-

rameter vector remains constant? The theorem given below answers that if the order of the

components of shape and scale parameter vectors are reversed, then Xn:n will be smaller than

Yn:n in reversed hazard rate ordering.
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Theorem 3.2 For i = 1, 2, . . . , n, let Xi and Yi be two sets of mutually independent random

variables with Xi ∼ LL (σi, λi) and Yi ∼ LL (σi, δi). Further, suppose that σ ∈ E+, λ, δ ∈ D+

or σ ∈ D+, λ, δ ∈ E+. Then,

λ
m
� δ implies Xn:n ≤rhr Yn:n.

Proof: For i = 1, 2 . . . , n, let us consider gi(y) = σi
x

(
1− 1

1+σi(y−log x)

)
. Differentiating gi(y)

with respect to y, we get

g
′
i(y) =

σ2
i

x (1 + σi (y − log x))2 ,

giving

g
′
i(λi)− g

′
i+1(λi+1)

sign
=
(
σ2
i − σ2

i+1

)
+ σ2

i σ
2
i+1

[
(λi+1 − log x)2 − (λi − log x)2

]
+ 2σiσi+1 [(σiλi+1 − σi+1λi)− log x (σi − σi+1)] .

So, if λ ∈ D+ (resp. E+) and σ ∈ E+ (resp. D+), then g
′
i(λi) − g

′
i+1(λi+1) ≤ (≥) 0. So, by

Lemma 2.1 (Lemma 2.2), r̃Xn:n (x) is Schur-concave in λ, proving the result. 2

Next, one counterexample is provided to show that, nothing can be said about reversed hazard

rate ordering between Xn:n and Yn:n if λ majorizes δ and all of λ, δ and σ are either in E+ or

in D+.

Counterexample 3.2 Let Xi ∼ LL (σi, λi) and Yi ∼ (σi, δi) , i = 1, 2, 3. Let (λ1, λ2, λ3) =

(0.1, 0.3, 4.1) ∈ E+ and (δ1, δ2, δ3) = (0.2, 0.3, 4) ∈ E+, giving λ
m
� δ. Now, if (σ1, σ2, σ3) =

(0.1, 3, 5) ∈ E+ is taken, then Figure 2 (a) shows that F3:3(x)
G3:3(x) is increasing in x. Again if

(σ1, σ2, σ3) = (2, 3, 5) ∈ E+ is taken, then Figure 2 (b) shows that F3:3(x)
G3:3(x) is decreasing in x.

So, it can be concluded that, for all σ,λ, δ ∈ D+(resp. E+), λ
m
� δ does not always imply

X3:3 ≤rhr Y3:3.

The following theorem shows that depending upon certain conditions, majorization order

of the shape parameters implies likelihood ratio ordering between Xn:n and Yn:n.

Theorem 3.3 For i = 1, 2, . . . , n, let Xi and Yi be two sets of mutually independent random

variables with Xi ∼ LL (σi, λi) and Yi ∼ LL (θi, λi). Further, suppose that σ,θ,λ ∈ D+ or

σ,θ,λ ∈ E+. Then, if λiσi > 1/2,

σ
m
� θ implies Xn:n ≥lr Yn:n.

Proof:

In view of theorem 3.1 and using (3.1) and (3.2), here we have only to show that

r̃Xn:n (x)

r̃Yn:n (x)
=

∑n
k=1 uk (σk, x)∑n
k=1 uk (θk, x)

= η(x)(say),
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Figure 2: Graph of F3:3(x)
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is increasing in x, where uk(y, x) = y2(λk−log x)
1+y(λk−log x) . Now, differentiating η(x) with respect to x,

η
′
(x)

sign
=

n∑
k=1

∂uk (σk, x)

∂x

n∑
k=1

uk (θk, x)−
n∑
k=1

∂uk (θk, x)

∂x

n∑
k=1

uk (σk, x)

= −h (σ, x)

n∑
k=1

uk (θk, x) + h (θ, x)

n∑
k=1

uk (σk, x) ,

where

h(σ, x) = −
n∑
k=1

∂uk (σk, x)

∂x
=

1

x

n∑
k=1

σ2
k

(1 + σk (λk − log x))2

and

h(θ, x) = −
n∑
k=1

∂uk (θk, x)

∂x
=

1

x

n∑
k=1

θ2
k

(1 + θk (λk − log x))2 .

Thus, to show that η(x) is increasing in x, we have only to show that

ψ (σ, x) =
h(σ, x)∑n

k=1 uk (σk, x)

is Schur-concave in σ.

Now, as
∂h(σ, x)

∂σi
=

1

x
.

2σi

(1 + σi(λi − log x))3

and
∂

∂σi

[
n∑
k=1

uk (σk, x)

]
= 1− 1

(1 + σi(λi − log x))2 ,
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then

∂ψ

∂σi

sign
=

2σi

(1 + σi (λi − log x))3

n∑
k=1

uk (σk, x)− x.h(σ, x)

(
1− 1

(1 + σi(λi − log x))2

)
.

So, if σ,λ ∈ D+ (resp ∈ E+), i.e., for i ≤ j if σi ≥ σj and λi ≥ λj (σi ≤ σj , λi ≤ λj), then

noticing the fact that 1
(1+σi(λi−log x))2

is decreasing in σi as well as in λi, it can be written that

1

(1 + σi (λi − log x))2 ≤ (≥)
1

(1 + σj (λi − log x))2 ≤ (≥)
1

(1 + σj (λj − log x))2 .

Again, as σiλi >
1
2 implying σi (λi − log x) > 1

2 for all 0 < x < 1, then

∂

∂σi

(
σi

(1 + σi (λi − log x))3

)
=

1− 2σi (λi − log x)

(1 + σi (λi − log x))4 < 0,

proving that σi
(1+σi(λi−log x))3

is decreasing in σi. Again, it is also decreasing in λi. Thus, for all

σi ≥ σj and λi ≥ λj (σi ≤ σj , λi ≤ λj),
σi

(1 + σi (λi − log x))3 ≤ (≥)
σj

(1 + σj (λi − log x))3 ≤ (≥)
σj

(1 + σj (λj − log x))3 .

So, for all i ≤ j

∂ψ

∂σi
− ∂ψ

∂σj

sign
=

n∑
k=1

σ2
k (λk − log x)

1 + σk (λk − log x)

[
2σi

(1 + σi (λi − log x))3 −
2σj

(1 + σj (λj − log x))3

]

+

n∑
k=1

σ2
k

(1 + σk (λk − log x))2

[
1

(1 + σi (λi − log x))2 −
1

(1 + σj (λj − log x))2

]
≤ (≥)0.

Thus the result follows from Lemma 3.1 (Lemma 3.3) of Kundu et al. ([9]). 2

Although Theorem 3.3 holds under a sufficient condition for two n component systems, the

next theorem shows that no such condition is required for these systems having multiple-outlier

LL model if the scale parameter vectors of these systems are common.

Theorem 3.4 For i = 1, 2, ..., n, let Xi and Yi be two sets of independent random variables

each following the multiple-outlier EW model such that Xi ∼ LL (σ, λ) and Yi ∼ LL (θ, λ) for

i = 1, 2, . . . , n1, Xi ∼ LL (σ∗, λ∗) and Yi ∼ LL (θ∗, λ∗) for i = n1 + 1, n1 + 2, . . . , n1 + n2(= n)

If

(σ, σ, . . . , σ,︸ ︷︷ ︸
n1

σ∗, σ∗, . . . , σ∗︸ ︷︷ ︸
n2

)
m
� (θ, θ, . . . , θ,︸ ︷︷ ︸

n1

θ∗, θ∗, . . . , θ∗︸ ︷︷ ︸
n2

)

and either {σ ≥ σ∗, θ ≥ θ∗, λ ≥ λ∗} or {σ ≤ σ∗, θ ≤ θ∗, λ ≤ λ∗} then Xn:n ≥lr Yn:n.

Proof: Following Theorem 3.3 and in view of Theorem 3.1, we have only to show that

ψ1(σ, x) =

∑n
k=1

σ2
k

(1+σk(λk−log x))2∑n
k=1

σ2
k(λk−log x)

1+σk(λk−log x)
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is Schur-concave in σ.

Now, three cases may arise:

Case(i) If 1 ≤ i < j ≤ n1, i.e., if σi = σj = σ and λi = λj = λ, then ∂ψ1

∂σi
− ∂ψ1

∂σj
= 0.

Case(ii) If n1 + 1 ≤ i < j ≤ n, i.e., if σi = σj = σ∗ and λi = λj = λ∗, then ∂Ψ
∂σi
− ∂Ψ

∂σj
= 0.

Case(iii) If 1 ≤ i ≤ n1 and n1 + 1 ≤ j ≤ n, then σi = σ, λi = λ and σj = σ∗, λi = λ∗. It can

be easily shown that

∂ψ1

∂σi
− ∂ψ1

∂σj

sign
=

(
n1σ

2

(1 + ξ1)2
+

n2σ
∗2

(1 + ξ2)2

)(
ξ2

2

(1 + ξ2)2
− ξ2

1

(1 + ξ1)2

)
+

(
σξ2

(1 + ξ1)
− σ∗ξ1

(1 + ξ2)

)(
2n1σ

(1 + ξ2)2(1 + ξ1)
+

2n2σ
∗

(1 + ξ1)2(1 + ξ2)

)
.

where ξ1 = σ(λ− log x) and ξ2 = σ∗(λ∗ − log x). Now, as σ ≥ (≤)σ∗ and λ ≥ (≤)λ∗, implying

that σ(λ− log x) ≥ (≤)σ∗(λ∗− log x) i.e. ξ1 ≥ (≤)ξ2, and moreover, ξ
1+ξ = 1− 1

1+ξ is increasing

in ξ, then
ξ22

(1+ξ2)2
≤ (≥)

ξ21
(1+ξ1)2

. Again,

σξ2

1 + ξ1
− σ∗ξ1

1 + ξ2
=

σσ∗ {(λ∗ − log x)(1 + σ∗(λ∗ − log x))− (λ− log x)(1 + σ(λ− log x))}
(1 + ξ1) (1 + ξ2)

≤ (≥) 0.

So, by Lemma 3.1 (Lemma 3.3) of Kundu et al. ([9]), the result is proved. 2

Theorem 3.3 guarantees that, for two n component parallel systems (with a sufficient

condition) having independent LL distributed lifetimes with a common scale parameter vector,

the majorized shape parameter vector leads to greater system’s lifetime in the sense of likelihood

ratio order. The next theorem states that the majorized scale parameter vector leads to smaller

system’s lifetime in the sense of likelihood ratio order when the shape parameter vector of these

two n-component parallel systems are common.

Theorem 3.5 For i = 1, 2, . . . , n, let Xi and Yi be two sets of mutually independent random

variables with Xi ∼ LL (σi, λi) and Yi ∼ LL (σi, δi). Further, suppose that σ ∈ E+, λ, δ ∈ D+

or σ ∈ D+, λ, δ ∈ E+. Then,

λ
m
� δ implies Xn:n ≤lr Yn:n.

Proof: In view of Theorem 3.2 and using (3.1) and (3.2), we are to prove that

η1(x) =

∑n
k=1

σk
x

(
1− 1

1+σk(λk−log x)

)
∑n

k=1
σk
x

(
1− 1

1+σk(δk−log x)

)
is decreasing in x i.e. to prove that

ψ2(λ, x) =

∑n
k=1

σ2
k

(1+σk(λk−log x))2∑n
k=1

σ2
k(λk−log x)

(1+σk(λk−log x))
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is Schur-convex in λ. Now,

∂ψ2

∂λi

sign
= − 2σ3

i

(1 + σi (λi − log x))3

n∑
k=1

σ2
k (λk − log x)

(1 + σk (λk − log x))
− σ2

i

(1 + σi (λi − log x))2

n∑
k=1

σ2
k

(1 + σk (λk − log x))2 .

So, by noticing the fact that

∂

∂σi

[
σi

(1 + σi (λi − log x))

]
=

1

(1 + σi (λi − log x))2 > 0,

giving that σi
(1+σi(λi−log x)) is increasing in σi, λ ∈ D+ (resp.E+) and σ ∈ E+ (resp.D+), i.e. for

all i ≤ j λi ≥ (≤)λj and σi ≤ (≥)σj gives

σ3
i

(1 + σi (λi − log x))3 ≤ (≥)
σ3
j

(1 + σj (λi − log x))3 ≤ (≥)
σ3
j

(1 + σj (λj − log x))3

and
σ2
i

(1 + σi (λi − log x))2 ≤ (≥)
σ2
j

(1 + σj (λi − log x))2 ≤ (≥)
σ2
j

(1 + σj (λj − log x))2 .

So,
∂ψ2

∂λi
− ∂ψ2

∂λj
≥ (≤)0.

Thus the result follows from Lemma 3.1 (Lemma 3.3) of Kundu et al. ([9]). 2
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