

Indian Institute of Management Kozhikode Working Paper

INFLATION HEDGING IN INDIA

Shubhasis Dey

IIMK/WPS/164/ECO/2014/22

November 2014

IIMK/WPS/164/ECO/2014/22

INFLATION HEDGING IN INDIA

Shubhasis Dey¹

¹Associate Professor, Indian Institute of Management Kozhikode, IIMK Campus PO, Kozhikode- 673570, email: <u>s.dey@iimk.ac.in</u>

Inflation Hedging in India

Shubhasis Dey*

Abstract

Inflation in India has been moderately high and volatile. In this paper we provide an estimate of the conditional mean and variance of CPI and WPI inflation rates with the help of a GARCH (1, 1) model. Under an environment of inflation uncertainty, rational risk-averse investors demand an inflation risk premium, defined as the difference between the expected real return on a nominal bond and the expected riskless real interest rate (often represented by the expected real return on an inflation-indexed bond). The sign of the inflation risk premium is a function of the inflation-hedging capability of alternative securities, such as gold, silver and stocks. Our estimated empirical models consistently find gold and silver to be effective hedges against expected WPI inflation rate, the predominant measure of Indian inflation. As for Indian equities, we find a strong negative correlation between the nominal returns and the conditional standard deviation of WPI inflation, providing empirical support of a positive inflation risk premium for Indian interest rates.

^{*} Shubhasis Dey is an Associate Professor at the Indian Institute of Management Kozhikode, Kozhikode, India. Email: s.dey@iimk.ac.in.

Introduction

Moderately high inflation has been a constant companion of Indian investors in most parts of India's post-independence history. In fact, WPI inflation averaged around 7 per cent per annum and CPI inflation averaged around 7.4 per cent per annum for the period 1960-2013. Coping with this moderately high inflation along with tepid economic growth has been a persistent challenge for the Indian economy, and only in the post-1991 liberalization era has India seen economic growth rates able to match its inflation rates. Under such an environment, it is natural to expect Indian investors to look for assets to hedge against inflation. In this paper, we estimate the extent to which Indian assets, such as gold, silver and stocks have been successful in serving as hedges against expected and unexpected components of inflation for the sample period 1960-2013. Our findings indicate a positive inflation risk premium in Indian interest rates.

Some of the earliest work on inflation hedging can be found in the work of Fisher (1930), where he argues that nominal interest rate can be written as a sum of expected real interest rate and expected inflation. Fama and Schwert (1977) extend Fisher's analysis to a wider range of assets including US Government bonds and treasury bills, US private residential real estate and US stocks. They postulate that if financial markets are efficient, then asset prices will be set in such a way that the expected nominal return on assets between any two periods can be written as a sum of the corresponding expected real return and expected inflation rate. The authors then clearly delineate the method of formally testing these hypotheses for various assets and find that US Government bonds and treasury bills serve as effective hedges against expected inflation, while US private residential real estate provides hedges against expected inflation as well as unexpected inflation. US stocks, however, did not exhibit any empirical evidence of being an inflation hedge; indeed they turned out to be negatively correlated to expected and unexpected inflation rate. By first adopting the methodology put forward by Fama and Schwert (1977) and using Indian data, we find that gold and silver serve as effective hedges against expected WPI inflation. We, however, find no empirical evidence of inflation hedging properties of Indian stocks against expected inflation, positive or negative.

Literature suggests that if inflation is uncertain nominal interest rate is known to include an inflation risk premium; see Fischer (1975), Liviatan and Levhari (1977), Landskroner and Liviatan (1981) and Chu et al. (1995) for more details. These authors define the inflation risk premium as the difference between the expected real return on a nominal bond and the expected riskless real interest rate (often represented by the expected real return on an inflation-indexed bond). According to Fischer (1975) the sign of the inflation risk premium is a function of the inflation-hedging capability of alternative securities, such as equities. Using the model put forward by Fischer (1975), Chu et al. (1995) hypothesize that if the nominal returns on alternative assets are negatively correlated with unexpected inflation rate, then these assets are a poor hedge against uncertain inflation and that in turn will result in risk-averse investors demanding a positive inflation risk premium.

In order to test the presence of inflation risk premium for the Indian market, following Fama and Schwert (1977), we first use an augmented nominal return model to include unexpected inflation (inflation forecast error); however, we no found statistical significance of unexpected inflation in any of the nominal models we tested. Using Fischer (1975) and under the assumption of no correlation between the nominal return of an asset and that on an inflationindexed bond, we are able to express the expected nominal return of an asset as the sum of the expected real return and the expected inflation rate, minus the inflation variance. Using this derivation and in order to maintain parity of units, we then test the augmented model of nominal return for various assets with standard deviation of inflation instead of its variance, where the inflation variance is estimated by a GARCH model. We again find gold and silver to be effective hedges against expected WPI inflation; however, the statistical significance of inflation uncertainty on the expected nominal return of these two assets is not very strong (negative in sign and significant only at a 10% level). Although for the nominal equity returns equation we find no evidence of hedging against expected inflation, we find strong empirical evidence of a negative influence of inflation uncertainty on expected nominal equity returns. Hence, our paper points to the presence of a positive inflation risk premium in Indian interest rates.

We believe that our paper fills an important research gap in applying established methodologies to test the degree of inflation hedging properties of various assets in the Indian context. Moreover, using Fischer (1975), we are able to generate novel testable implications that enable us to establish a link between inflation variability and expected nominal returns of various assets, such as gold, silver and equities. Doing so, we empirically validate the presence of a positive inflation risk premium in Indian interest rates.

Even though we could only uncover a positive sign of the inflation risk premium in Indian interest rates, given the current deficiencies of the Indian bond market, we are unable to provide a direct measure of the inflation risk premium. In a future work, as we expect to see the Indian bond market and, more specifically, the Indian inflation-indexed bond market mature, we propose to extend this study to directly measure the inflation risk premium in Indian interest rates.

Data

The data for our study is primarily from two sources – International Monetary Fund (IMF) *International Financial Statistics (IFS)* and Reserve Bank of India (RBI) *Database on Indian Economy*. The data on Consumer Price Index (CPI), Wholesale Price Index (WPI) and Stock Price Index is obtained from *IFS* at monthly frequency for a period between 1960 January and 2013 December. The RBI database provides monthly data on gold and silver prices from 1990 April to 2013 December. The CPI data represent the cost of living of the entire Indian population, rural and urban combined with a base year of 2010. Similarly, the WPI data that we use is a pan-India cost of living index at the wholesale level with a base year of 2010. The Stock Price Index is the Bombay Stock Exchange Index (BSE Sensex), which is a 'Market Capitalization-Weighted' index of 30 component stocks representing a sample of large, well-established and financially sound companies. The gold price data from RBI database is the monthly average price in rupees for 10 grams of gold at Mumbai. The silver price is the monthly average price in rupees for 1 kilogram of silver at Mumbai. The returns on all assets – gold, silver, and stocks as well as the CPI and WPI inflation rates are calculated as the difference between the natural logarithm of a period's value and its value 12 months prior.

Model and Results

One of the earliest works on the links between inflation and asset returns is the treatise on interest rates by Fisher (1930). A deeper exploration of this link and its extension to other risky assets can be found in the works of Fama (1975, 1976), Lintner (1975), Body (1976), Jaffe and Mandelker (1976), Nelson (1976), and Fama and Schwert (1977). On a related work in the Indian context see Mayya (1977) and Prabhakaran (1989). Fama and Schwert (1977) hypothesize that if the market is efficient, then at period t - 1 it will set the price of an asset in such a way that the expected nominal return on the asset between t - 1 and t is the sum of the appropriate

real return on the asset between t - 1 and t and the expected inflation rate from t - 1 to t. In other orders,

$$E(R_{it}|\varphi_{t-1}) = E(r_{it}|\varphi_{t-1}) + E(\pi_t|\varphi_{t-1})$$
(1)

where R_{it} is the nominal return on asset *i* between t - 1 and *t*, $E(r_{it}|\varphi_{t-1})$ is the expected real return of the asset from t -1 to t as implied by the information set φ_{t-1} available at t - 1, and $E(\pi_t|\varphi_{t-1})$ is the expected inflation rate at t - 1.

Under the assumption that since the expected real return on an asset is determined by real factors, such as productivity of capital, discount factor, and risk preference, it would not be affected by nominal variables such as the expected rate of inflation, Fama and Schwert put forward the following empirical model from equation (1):

$$R_{it} = \alpha_i + \beta_i E(\pi_t | \varphi_{t-1}) + \varepsilon_{it}$$
⁽²⁾

where α_i and β_i are the regression coefficients and ε_{it} is a white noise error term. Using equation (2), the authors suggest that when we fail to reject the hypothesis that $\beta_i = 1$, we may conclude that the asset in question is a complete hedge against expected inflation.

Before we estimate equation (2) and test hypotheses regarding the inflation hedging properties of various assets, we need to ensure that all variables in the regression are stationary. Table 1 through Table 5 in the Appendix of the paper show the results of both the Augmented Dickey-Fuller tests and the Phillips-Perron tests. The unit root test results reject the null hypotheses of a unit root in CPI and WPI inflation rates and in the nominal rate of the returns on gold, silver and stocks.

In order to estimate equation (2), we first need an empirical measure of the expected inflation rate. Following Gultekin (1983), we forecast the CPI and WPI inflation rates using an appropriate empirical model and then use the forecasted value as an empirical measure of the expected inflation rate. For the purpose of arriving at the appropriate empirical model to forecast inflation rates, we generate the correlograms of the two series. Figures 6 and 7 in the Appendix show the correlograms of CPI and WPI inflation rates respectively. The two figures point towards an ARMA model with seasonality. We experimented with various seasonal ARMA models for the CPI and WPI inflation rates and the final models, as shown in Tables 6 and 8 in the Appendix, were arrived at by simultaneously satisfying three model selection criteria – parsimony, lowest value of AIC (Akaike Information Criterion) and no serial correlation in residuals. The Q-statistics (Figures 8 and 9) and the Breusch-Godfrey LM test statistics (Tables 7

and 9) show no significant serial correlations in the residuals up to 36 lags for both the inflation rate models. The inflation forecasting model is generally given by the following:

$$\pi_t = E(\pi_t | \varphi_{t-1}) + \varepsilon_t \tag{3}$$

where ε_t is a white noise error term. The CPI inflation model is specified as

$$(1 - \rho_1 L - \rho_2 L^2)\pi_t = c_0 + (1 + \theta_1 L + \theta_2 L^2 + \theta_3 L^3)(1 + \gamma L^{12})\epsilon_t$$
(4)

where ρ 's, θ 's and γ are the regression coefficients, c_0 is the constant term and *L* is a lag operator, such that, $L^n x_t = x_{t-n}$. Table 6 in the Appendix shows the estimates of the regression coefficients c_0 , ρ 's, θ 's and γ respectively. Similarly, the WPI inflation the model is specified as

$$(1 - \alpha_1 L - \alpha_2 L^2)(1 - \tau L^7)\pi_t = c_1 + (1 + \pi_1 L + \pi_2 L^2)(1 + \delta L^{12})\epsilon_t$$
 (5)
where α 's, τ , π 's and δ are the regression coefficients, c_1 is the constant term and L is the lag
operator. Table 8 in the Appendix shows the estimates of the regression coefficients c_1 , α 's, τ , π 's
and δ respectively.

Using the estimates of equations (4) and (5), we forecast CPI and WPI inflation rates and those inflation forecasts are used for estimating equation (2). Tables 10.0, 12.0, 14.0, 15.0, 17.0 and 19.0 show the estimates of equation (2) for gold, silver and equity returns using forecasted values of CPI and WPI inflation rates as regressors. For proper inference from these estimations, we use robust standard errors. The results show that none of the assets under consideration are effective hedges against expected CPI inflation. The result is unsurprising given that in India the WPI instead of the CPI has been the dominant measure of inflation during our sample period. However, the estimated values of β_i for gold and silver nominal returns equations with WPI inflation forecasts as regressors are 1.006 and 1.383 respectively. Both these estimates are significant and in both cases we fail to reject the hypothesis that $\beta_i = 1$. Although we could not reject several hypotheses regarding β_i around the value of 1, given its estimated values, we conclude that gold and silver do serve as effective hedges against expected WPI inflation. We found Indian stocks to be an ineffective hedge against expected WPI inflation.

When inflation is uncertain, rational risk-averse investors would expect nominal asset returns to compensate them for facing such an uncertainty. Fama and Schwert (1977) extended their model beyond the traditional Fisher equation to reflect this inflation uncertainty by adding an unanticipated inflation component. They intended to test the extent to which the asset returns in their sample compensated investors against expected as well as unexpected inflation. Their augmented model thus became

$$E(R_{it}|\varphi_{t-1}) = E(r_{it}|\varphi_{t-1}) + E(\pi_t|\varphi_{t-1}) + \mu_i[\pi_t - E(\pi_t|\varphi_{t-1})]$$
(6)

The empirical model from equation (6) became

$$R_{it} = \alpha_i + \beta_i E(\pi_t | \varphi_{t-1}) + \mu_i [\pi_t - E(\pi_t | \varphi_{t-1})] + u_{it}$$
(7)

Using equation (7), the authors suggest that when we fail to reject the hypothesis that $\beta_i = 1$, we may conclude that the asset in question is a complete hedge against expected inflation, when the tests suggest that $\mu_i = 1$, then the asset is a complete hedge against unexpected inflation, and when we fail to reject the hypothesis that $\beta_i = \mu_i = 1$, then we say that the asset is a complete hedge against inflation.

Following Gultekin (1983), we use seasonal ARMA forecasts from equations (4) and (5) for CPI and WPI expected inflation rates and the corresponding inflation forecast errors as regressors in equation (7). Tables 10.1, 12.1, 14.1, 15.1, 17.1 and 19.1 show the estimates of equation (7) for gold, silver and equity returns. Again, for proper inference from these estimations we use robust standard errors. As before, the results show that none of these assets are effective hedges against expected and unexpected CPI inflation. However for the WPI inflation model, the estimated values of β_i for gold and silver nominal returns equations are 1.048 and 1.444 respectively. These estimates are again significant and in both cases we fail to reject the hypothesis that $\beta_i = 1$. Even though we could not reject several hypotheses regarding β_i around the value of 1, given its estimated values, we again conclude that gold and silver do serve as effective hedges against expected WPI inflation in the augmented Fisher equation. There is, however, no empirical evidence of gold and silver being hedges against expected and unexpected WPI inflation. We again found Indian stocks to be an ineffective hedge against expected and unexpected WPI inflation.

Under an environment of inflation uncertainty, the theoretical literature suggests that riskaverse investors will demand an inflation risk premium in order to be compensated for the uncertainty in future inflation rates [Fischer (1975), Liviatan and Levhari (1977) and Landskroner and Liviatan (1981)]. This inflation risk premium is defined as the difference between the expected real return on a nominal bond and the expected riskless real interest rate (often represented by the expected real return on an inflation-indexed bond). According to Fischer (1975) the sign of the inflation risk premium is a function of the inflation-hedging capability of alternative securities, such as equities. Using the Fischer (1975) framework, Chu et al. (1995) hypothesize that if the nominal returns on alternative assets are negatively correlated with unexpected inflation rate, then these assets are a poor hedge against uncertain inflation and that in turn will imply a positive inflation risk premium. Under the assumption of no correlation between the nominal return of an asset and that on an inflation-indexed bond, we show using Fischer (1975) that the expected nominal return of an asset to be

$$E(R_{it}|\varphi_{t-1}) = E(r_{it}|\varphi_{t-1}) + E(\pi_t|\varphi_{t-1}) - Var(\pi_t|\varphi_{t-1})$$
(8)

where $Var(\pi_t | \varphi_{t-1})$ is the conditional variance of inflation. In fact, given that the market for inflation-indexed bonds had not yet fully formed in India during our sample period, the assumption of no correlation between the nominal return of an asset and that on an inflation-indexed bond is indeed quite defensible. Moreover, in order to maintain parity of units we estimate the following empirical model using equation (8):

$$R_{it} = \alpha_i + \beta_i E(\pi_t | \varphi_{t-1}) + \vartheta_i sd(\pi_t | \varphi_{t-1})] + v_{it}$$

$$\tag{9}$$

where $sd(\pi_t | \varphi_{t-1})$ is the conditional standard deviation of inflation. Following the methods pioneered by Engle (1982) and Bollerslev (1986) for estimating inflation uncertainty, we propose a GARCH model for getting an estimate of the conditional variance (and hence a conditional standard deviation) of inflation for our empirical model. For an application of GARCH model in the Indian inflation context, see Thornton (2006). However, before we specify a GARCH model we test the presence of conditional heteroskedasticity in the error terms of the inflation models put forward in equations (4) and (5). Both the Q-statistics and the ARCH LM tests for the residuals of the two models point to the presence of conditional heteroskedasticity in error terms (see Figures 10 and 11 and Tables 20 and 21 in the Appendix for the test results). We therefore proceed to parameterize the conditional variance of the error terms in equations (4) and (5) as a GARCH (1, 1) process, given by

$$Var(\pi_t | \varphi_{t-1}) = E(\epsilon_t^2 | \varphi_{t-1}) = a + b\epsilon_{t-1}^2 + cVar(\pi_{t-1} | \varphi_{t-2})$$
(10)

Using the GARCH (1, 1) specification, we estimate both the conditional mean and variance of the CPI and WPI inflation rates. Moreover, the correlograms of residuals, as shown in Figures 12, 13, 14 and 15, and the ARCH LM tests of Tables 23 and 25 testify to the goodness of fit of the GARCH (1, 1) model for the conditional variance of the inflation error terms.

Finally, using the estimated conditional means and standard deviations of CPI and WPI inflation rates as regressors, we estimate equation (9) for our chosen asset returns. Similar to the

other nominal return regressions, the results in Tables 26, 28 and 29 show that none of these assets are effective hedges against expected and unexpected CPI inflation. However for the WPI inflation model, the estimated values of β_i for gold and silver nominal returns equations are 1.211 and 1.658 respectively. These estimates are again significant and in both cases we fail to reject the hypothesis that $\beta_i = 1$. Even though we could not reject several hypotheses regarding β_i around the value of 1, given its estimated values, we again conclude that gold and silver do serve as effective hedges against expected WPI inflation in the augmented Fisher equation. We indeed have a weak evidence of negative correlation between the nominal returns of gold and silver and the conditional standard deviation of WPI inflation. This provides a hint, though not a clear evidence of the presence of a positive inflation premium. Finally, Indian equities are found to be uncorrelated with the expected WPI inflation uncertainty. This shows that equities serve a very poor hedge against unexpected inflation and hence we expect investors in India demanding a positive inflation risk premium in interest rates.

Conclusions

Inflation in India has been moderately high and volatile. Given such an environment, inflation hedging is bound to gain importance among rational risk-averse investors. In this paper, we extend the long literature on inflation hedging to the Indian market. When inflation is uncertain, then the nominal interest rate is theoretically known to include an inflation risk premium. The sign of the inflation risk premium is a function of the inflation-hedging capability of alternative securities, such as gold, silver and stocks. Using multiple empirically methodologies for testing the inflation hedging properties of assets, we consistently find gold and silver to be effective hedges against expected WPI inflation rate, the predominant measure of Indian inflation. Indian stocks, on the other hand, exhibit no inflation hedging properties against expected inflation.

We also extend the empirical literature by using the Fischer (1975) model to derive a new testable implication relating nominal asset return, expected inflation and conditional standard deviation of inflation. By testing a new augmented Fisher (1930) hypothesis, we find a weak evidence of correlation between gold and silver nominal returns and the conditional standard deviation of WPI inflation, thus hinting towards a possibility, if not a clear evidence, of a

9

positive inflation risk premium. As for Indian equities, we indeed find a strong negative correlation between the nominal returns and the conditional standard deviation of WPI inflation. Hence, we find that Indian stocks are a poor hedge against unexpected component of India's main inflation measure and hence we argue that Indian interest rates will include a positive inflation risk premium.

Bond market in India, corporate and Government, has yet to fully mature. More importantly, the inflation-indexed bonds have just been launched in India. Although we found empirical evidence of a positive inflation risk premium in Indian interest rates, given the current deficiencies of the Indian bond market, we could not provide a direct measure of the inflation risk premium. As an extension of this study, we propose to directly measure the inflation risk premium in Indian interest rates using the real return on India's inflation-indexed bond as the measure of the riskless real interest rate.

References

- Bollerslev, T. P. (1986), 'Generalized Autoregressive Conditional Heteroscedasticity'. *Journal of Econometrics*, 31, 307-327.
- Body, Z. (1976), 'Common Stocks as a Hedge against Inflation'. *Journal of Finance*, 31, 459-470.
- Chu, Q., Lee, C. and Pittman, D. (1995), 'On the Inflation Risk Premium'. *Journal of Business Finance & Accounting*, 22, 881-892.
- Engle, R.F. (1982), 'Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation'. *Econometrica*, 50, 987-1007.
- Fama, E.F. (1975), 'Short-term Interest Rates as Predictors of Inflation'. *American Economic Review*, 65, 269-282.
- Fama, E.F. (1976), 'Inflation Uncertainty and Expected Returns on Treasury Bills'. *Journal of Political Economy*, 84, 427-448.
- Fama, E.F. and Schwert, G.W. (1977), 'Asset Returns and Inflation'. *Journal of Financial Economics*, 5, 115-146.
- Fischer, S. (1975), 'The Demand for Index Bonds'. Journal of Political Economy, 83, 509-534.
- Fisher, I. (1930), 'Theory of Interest Rates' (MacMillan, New York).
- Gultekin, N.B. (1983), 'Stock Market Returns and Inflation: Evidence from Other Countries'. *Journal of Finance*, 38, 49-65.
- Jaffe, J. and Mandelker, G. (1976), 'The 'Fisher Effect' for Risky Assets: An Empirical Investigation'. *Journal of Finance*, 31, 447-458.
- Landskroner, Y. and Liviatan, N. (1981), 'Risk Premia and the Sources of Inflation', *Journal of Money, Credit, and Banking*, 13, 205-214.

Lintner, J. (1975), 'Inflation and Security Returns'. Journal of Finance, 30, 259-280.

- Liviatan, N. and Levhari, D. (1977), 'Risk and the Theory of Indexed Bonds'. American Economic Review, 67, 366-375.
- Mayya, M. R. (1977), 'Do Equities Act as a Hedge against Inflation'. *Economic and Political Weekly*, 12, 61-71.
- Nelson, C.R. (1976), 'Inflation and Rates of Return on Common Stocks'. *Journal of Finance*, 31, 471-483.
- Prabhakaran, M. (1989), 'Do Equities Act as a Hedge against Inflation?' *Economic and Political Weekly*, 24, 24-26.
- Thornton, J. (2006), 'Inflation and Inflation Uncertainty in India, 1957-2005'. *Indian Economic Review*, 41, 1-8.

Appendix

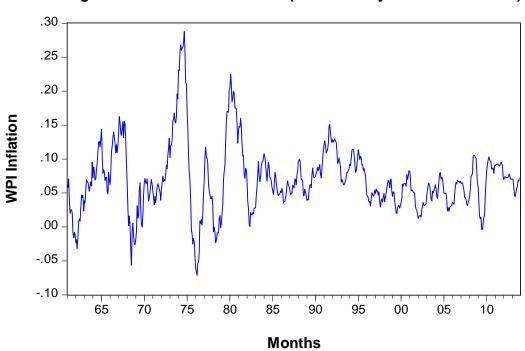
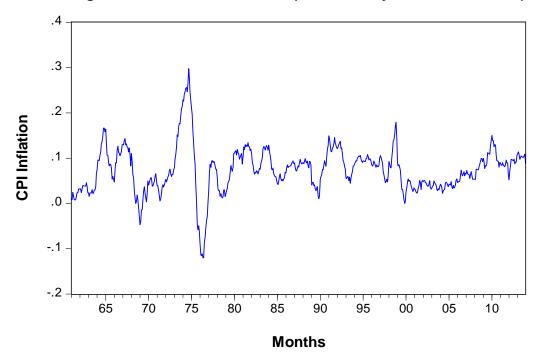



Figure 1: WPI Inflation for India (1961 January to 2013 December)

Figure 2: CPI Inflation for India (1961 January to 2013 December)

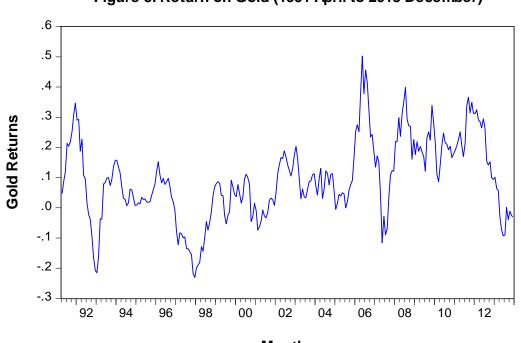
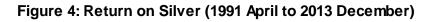
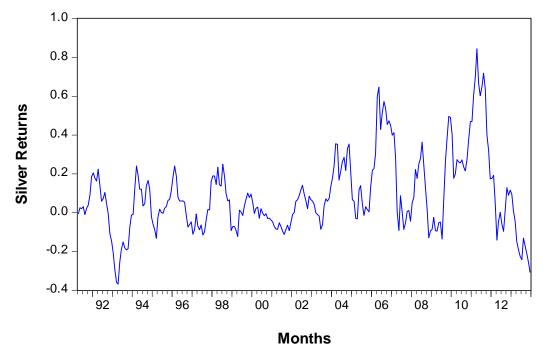
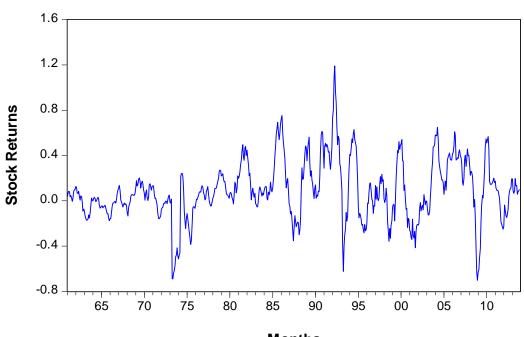





Figure 3: Return on Gold (1991 April to 2013 December)

Months

Months

Table 1.1: CPI Inflation Unit Root Tests

Null Hypothesis: CPI Inflation has unit root Exogenous: Constant

		t-Statistic	Prob.
Augmented Dickey-Fuller test statistic		-4.692412	0.0001
Test critical values:	1% level	-3.440634	
	5% level	-2.865969	
	10% level	-2.569187	

Table 1.2: CPI Inflation Unit Root Tests

Null Hypothesis: CPI Inflation has unit root Exogenous: Constant

		Adj. t-Stat	Prob.
Phillips-Perron test statistic		-4.657930	0.0001
Test critical values:	1% level 5% level	-3.440419 -2.865874	
	10% level	-2.569136	

Table 2.1: WPI Inflation Unit Root Tests

		t-Statistic	Prob.
Augmented Dickey-Fuller test statistic		-4.602654	0.0001
Test critical values:	1% level	-3.440634	
	5% level	-2.865969	
	10% level	-2.569187	

Null Hypothesis: WPI Inflation has unit root Exogenous: Constant

Table 2.2: WPI Inflation Unit Root Tests

Null Hypothesis: WPI Inflation has unit root Exogenous: Constant

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		-4.788778	0.0001
Test critical values:	1% level	-3.440419	
	5% level	-2.865874	
	10% level	-2.569136	

Table 3.1: Gold Returns Unit Root Tests

Null Hypothesis: Gold Returns has unit root Exogenous: None

		t-Statistic	Prob.
Augmented Dickey-Fuller test statistic		-1.767149	0.0734
Test critical values:	1% level	-2.573886	
	5% level	-1.942050	
	10% level	-1.615885	

Table 3.2: Gold Returns Unit Root Tests

Null Hypothesis: Gold Returns has unit root Exogenous: None

		Adj. t-Stat	Prob.
Phillips-Perron test statistic		-2.859838	0.0043
Test critical values:	1% level	-2.573491	
	5% level	-1.941995	
	10% level	-1.615920	

Table 4.1: Silver Returns Unit Root Tests

		t-Statistic	Prob.
Augmented Dickey-Fu Test critical values:	uller test statistic 1% level 5% level 10% level	-1.890147 -2.573886 -1.942050 -1.615885	0.0562

Null Hypothesis: Silver Returns has unit root Exogenous: None

Table 4.2: Silver Returns Unit Root Tests

Null Hypothesis: Silver Returns has a unit root Exogenous: None

	Adj. t-Stat	Prob.
Phillips-Perron test statistic		0.0008
1% level	-2.573491	
5% level	-1.941995	
10% level	-1.615920	
	1% level 5% level	atistic -3.374215 1% level -2.573491 5% level -1.941995

Table 5.1: Stock Returns Unit Root Tests

Null Hypothesis: Stock Returns has unit root
Exogenous: Constant

		t-Statistic	Prob.
Augmented Dickey-Fuller test statistic		-4.288548	0.0005
Test critical values:	1% level 5% level	-3.440634 -2.865969	
	10% level	-2.569187	

Table 5.2: Stock Returns Unit Root Tests

Exogenous: Constant					
		Adj. t-Stat	Prob.		
Phillips-Perron test statistic		-5.598838	0.0000		
Test critical values:	1% level	-3.440419			
	5% level	-2.865874			
	10% level	-2.569136			

Null Hypothesis: Stock Returns has unit root Exogenous: Constant

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.974	0.974	605.91	0.000
		2	0.930	-0.356	1159.2	0.000
1	I I I	3		-0.031	1655.2	0.000
		4		-0.193	2086.8	0.000
	<u> </u>	5		-0.065	2451.9	0.000
		6		-0.157	2748.8	0.000
		7		-0.079	2979.7 3151.2	0.000 0.000
		9		-0.052	3271.0	0.000
		10		-0.092	3346.8	0.000
		11		-0.127	3387.2	0.000
		12	0.161	0.082	3404.2	0.000
		13	0.095	0.380	3410.0	0.000
ı)ı		14	0.037	-0.094	3410.9	0.000
ի դի ի	u)u	15	-0.015	0.024	3411.1	0.000
<u> </u>	i)i		-0.058	0.009	3413.3	0.000
	I <u>I</u> I		-0.095		3419.2	0.000
	<u> </u>		-0.126		3429.6	0.000
			-0.149		3444.2	0.000
			-0.168		3462.8	0.000
			-0.184		3485.0 3509.3	0.000
	191 101		-0.192	0.017	3533.7	0.000 0.000
			-0.188	0.053	3557.0	0.000
	· p·		-0.176	0.261	3577.7	0.000
			-0.163		3595.4	0.000
	ı)		-0.148	0.026	3610.0	0.000
🖬		28	-0.136	-0.119	3622.4	0.000
🖬	u u		-0.125		3632.9	0.000
[]	I I I		-0.114		3641.6	0.000
[!	ų.		-0.106		3649.2	0.000
_	i		-0.098	0.018	3655.7	0.000
<u></u> '	III I		-0.089		3661.1	0.000
	111		-0.083		3665.7	0.000
			-0.079		3669.9	0.000
[] []	1 j i	36	-0.077	0.010	3674.0	0.000

Figure 6: Correlogram of CPI Inflation

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.968	0.968	598.19	0.000
	I	2	0.917	-0.293	1136.9	0.000
	ı II I	3	0.863	-0.024	1614.1	0.000
	□ !	4		-0.133	2026.1	0.000
		5		-0.116	2370.0	0.000
	I I I	6		-0.035	2649.4	0.000
	L I	7		-0.099	2867.8	0.000
	 	8		-0.121	3028.3	0.000
	III I	9		-0.016	3139.5	0.000
		10		-0.102	3209.3	0.000
	<u> </u>	11		-0.122	3245.9	0.000
	1	12		-0.010	3260.0	0.000
		13		0.469	3265.2	0.000
' <u> </u> '	'	14		-0.097	3266.3	0.000
			-0.002		3266.3	0.000
<u>"</u>			-0.043		3267.5	0.000
		1	-0.080		3271.7	0.000
	I]I		-0.114		3280.2	0.000
	1		-0.143		3293.6	0.000
	ų,		-0.166		3311.6	0.000
	1 III	1	-0.183		3333.8	0.000
			-0.195		3358.8	0.000
	101		-0.198		3384.7	0.000
=:			-0.192	0.042	3409.2	0.000
=:			-0.183	0.313	3431.4	0.000
	U 1		-0.173		3451.2	0.000
				0.013	3468.3	0.000
		1	-0.146		3482.6	0.000
	"		-0.132		3494.3	0.000
			-0.118		3503.6 3511.5	0.000 0.000
			-0.098		3511.5	0.000
			-0.098		3523.2	0.000
			-0.089		3523.2	0.000
			-0.083		3532.7	0.000
	· · · · ·		-0.085		3537.6	0.000
<u> </u>	, h,	50	-0.000	0.000	3331.0	0.000

Figure 7: Correlogram of WPI Inflation

Dependent Variable: C Method: Least Squares Sample (adjusted): 196	5	2		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) AR(2) MA(1) MA(2) MA(3) SMA(12)	0.075689 1.890631 -0.894925 -0.591515 -0.205901 0.089554 -0.961524	0.055555 0.047821 0.042561	-22.66832 -10.64732 -4.305654 2.104109	0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.978334 0.978126 0.007642 0.036621 2194.053 4718.639 0.000000	Mean depend S.D. depend Akaike info c Schwarz crite Hannan-Quir Durbin-Wats	ent var riterion erion nn criter.	0.074384 0.051674 -6.899220 -6.850065 -6.880132 1.995638

Table 6: Sesonal ARMA (2, 3) Model Estimation Output

Q-statistic probabilities adjusted for 6 ARMA terms					
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
- III		1 -0.003		0.0054	
		2 0.006 3 -0.015	0.006	0.0305	
		4 -0.044		1.4165	
		5 0.032		2.0577	
i j i	1 1	6 0.034	0.034	2.7860	
u(i	ի դիս	7 -0.024			0.076
ի դի	ի դին	8 0.018	0.017	3.3734	0.185
ի հեր	լոր	9 0.033		4.0735	0.254
'P		10 0.086	0.088		0.065
∥ ı l ı	1 1	11 -0.007		8.8813	0.114
	']'	12 0.002	0.003	8.8829	0.180
l 4	"	13 -0.041		9.9696	0.190
		14 -0.022		10.292	0.245
9.	<u>"</u> !	15 -0.054		12.174	0.204
		16 -0.007 17 0.020	0.013	12.209 12.458	0.271 0.330
1 ini.	, igi I idi	18 -0.020		12.456	0.386
		19 -0.022		12.979	0.388
,		20 0.044		14.256	0.431
		21 -0.036		15.098	0.444
l d.	1 1	22 -0.041		16.218	0.438
		23 -0.026			0.478
()	(1)	24 -0.062			0.379
i i	ի դին	25 0.014	0.017	19.333	0.436
l ili	ի դին	26 0.020	0.013	19.591	0.484
i)	ip	27 0.062		22.186	0.389
ll i li	լ փ	28 0.020			0.433
l i þi	լուն	29 0.039			0.435
		30 0.008	0.008	23.492	0.491
I <mark> </mark> I	<u> </u>	31 -0.020		23.770	0.533
"['	<u> </u>	32 -0.042		24.975	0.520
		33 0.025	0.029	25.404	0.552
		34 0.003	0.007	25.411	0.605
		1	-0.000	25.494	0.652
Ч ^и	 	36 0.060	0.049	27.911	0.575

Figure 8: Correlogram of	Residuals for SARMA ()	2, 3) Model of CPI Inflation

Table 7: Breusch-Godfrey Serial Correlation LM Test for SARMA (2, 3) Model of CPI Inflation

F-statistic	Prob. F(36,591)	0.7810
Obs*R-squared	Prob. Chi-Square(36)	0.7939

Dependent Variable: W Method: Least Squares Sample (adjusted): 196	s	2		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) AR(2) SAR(7) MA(1) MA(2) SMA(12)	0.070241 1.879827 -0.882376 0.082353 -0.610439 -0.153839 -0.934345	0.066437 0.041925 0.080261 0.050964	-13.28138 1.964303 -7.605698	0.0000 0.0499 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.971363 0.971086 0.008703 0.046956 2088.419 3505.078 0.000000	Mean depend S.D. depend Akaike info d Schwarz crite Hannan-Quir Durbin-Wats	ent var riterion erion nn criter.	0.070285 0.051179 -6.639296 -6.589716 -6.620034 2.002129

Table 8: Seasonal ARMA (2, 2) Model Estimation Output

Q-statistic probabilities adjusted for 6 ARMA terms					
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
- III	ili	1 -0.004		0.0107	
	[2 -0.020		0.2580	
			0.022	0.5747	
		4 0.012			
		5 -0.009			
' '	I I	6 0.027			
		7 0.002		1.1708	0.279
		8 -0.048			0.270
			0.018		0.415
			0.075		0.154
	'µ' d.	11 0.061	0.065	9.0259	0.108
l 9:		12 -0.060		11.301	0.080
		13 -0.051		12.951	0.073
		14 -0.029 15 0.020		13.489	0.096
		15 0.020 16 0.006		13.756	0.131
				13.776	0.183
		17 -0.002	0.010	13.778 13.779	0.246 0.315
		18 0.002 19 -0.003		13.786	0.315
		20 -0.054		15.677	0.333
		20 -0.034		16.283	0.363
		22 -0.002		16.287	0.433
		22 -0.002		17.927	0.393
		23 -0.030		18.051	0.353
			0.004	18.200	0.402
		26 -0.030		18.792	0.535
		27 0.001	0.002	18.793	0.598
		28 -0.019		19.038	0.643
		29 0.018		19.247	0.687
		30 0.025	0.040	19.675	0.715
		31 -0.027		20.163	0.738
		32 -0.009		20.220	0.781
			0.006	20.333	0.817
		34 0.083		24.907	0.633
		35 0.022	0.022	25.236	0.666
		36 0.075	0.077	29.026	0.516
		55 5.570	0.017	20.020	0.010

Figure 9: Correlogram of Residuals for SARMA (2, 2) Model of WPI Inflation

Table 9: Breusch-Godfrey Serial Correlation LM Test for SARMA (2, 2) Model of WPI Inflation

F-statistic	0.826101	Prob. F(36,584)	0.7554
Obs*R-squared	30.03772	Prob. Chi-Square(36)	0.7473

Dependent Variable: Gold Returns Method: Least Squares Sample (adjusted): 1991M04 2013M12 HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 6.0000)				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C CPI Inflation Forecast	0.044416 0.656105			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.025813 0.022218 0.132179 4.734730 166.0755 7.180540 0.007821 0.103848	Hannan-Quin	ent var riterion erion in criter. on stat	0.093852 0.133672 -1.202018 -1.175575 -1.191403 0.132774 2.663307

Table 10.0: Gold Returns and Expected Inflation

Table 10.1: Gold Returns, Expected Inflation and Unexpected Inflation

Dependent Variable: Gold Returns Method: Least Squares Sample (adjusted): 1991M04 2013M12 HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 6.0000)				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C CPI Inflation Forecast Forecast Error	0.045912 0.638959 -1.174602		1.579914	0.1153
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.029449 0.022260 0.132176 4.717056 166.5859 4.096238 0.017680 0.108409	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quir Durbin-Wats Wald F-statis	ent var riterion erion nn criter. on stat	0.093852 0.133672 -1.198432 -1.158767 -1.182510 0.143344 2.240224

Wald Test: Equation: Gold Returns					
Test Statistic	Value	df	Probability		
t-statistic F-statistic Chi-square	-0.855387 0.731687 0.731687	271 (1, 271) 1	0.3931 0.3931 0.3923		
Null Hypothesis: C(2) = 1 Null Hypothesis Summary:					
Normalized Restriction (= 0) Value Std. Err.					
-1 + C(2)		-0.343895	0.402034		
Restrictions are linear in coefficients.					

Table 11.0: Gold as a Hedge Against Expected Inflation

Table 11.1: Gold as a Hedge Against Expected Inflation

Wald Test: Equation: Gold Returns					
Test Statistic	Value	df	Probability		
t-statistic F-statistic Chi-square Null Hypothesis:	-0.892725 0.796958 0.796958	270 (1, 270) 1	0.3728 0.3728 0.3720		
Null Hypothesis					
Normalized Restriction (= 0) Value Std. Err.					
-1 + C(2)		-0.361041	0.404426		
Restrictions are linear in coefficients.					

Table 12.0:	Silver Returns	and Expected	Inflation
10010 12.0.	on for recentlo	and Expected	in the decision of the

Dependent Variable: Silver Returns Method: Least Squares Sample (adjusted): 1991M04 2013M12 HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 6.0000)						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
C CPI Inflation Forecast	0.041440 0.607535					
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.009740 0.006086 0.200886 10.93622 51.80374 2.665509 0.103706 0.270244	Mean depend S.D. depende Akaike info ci Schwarz crite Hannan-Quin Durbin-Watso Wald F-statis	ent var riterion erion in criter. on stat	0.087217 0.201500 -0.364863 -0.338420 -0.354248 0.147629 1.220491		

Table 12.1: Silver Returns, Expected Inflation and Unexpected Inflation

Dependent Variable: Silver Returns Method: Least Squares Sample (adjusted): 1991M04 2013M12 HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 6.0000)							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
C CPI Inflation Forecast Forecast Error	0.041902 0.602252 -0.361853		1.089760	0.2768			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.009892 0.002558 0.201242 10.93454 51.82468 1.348748 0.261308 0.517719	Schwarz crite Hannan-Quir	ent var riterion erion nn criter. on stat	0.087217 0.201500 -0.357690 -0.318025 -0.341768 0.148654 0.659931			

Wald Test: Equation: Silver Returns							
Test Statistic	Value	df	Probability				
t-statistic F-statistic Chi-square Null Hypothesis: Null Hypothesis		271 (1, 271) 1	0.4760 0.4760 0.4754				
Normalized Restriction (= 0) Value Std. Err.							
-1 + C(2) -0.392465 0.549925							
Restrictions are linear in coefficients.							

Table 13.0: Silver as a Hedge Against Expected Inflation

•

Table 13.1: Silver as a Hedge Against Expected Inflation

Wald Test: Equation: Silver Returns						
Test Statistic	Value	df	Probability			
t-statistic F-statistic Chi-square	-0.719714 0.517989 0.517989	270 (1, 270) 1	0.4723 0.4723 0.4717			
Null Hypothesis: C(2) = 1 Null Hypothesis Summary:						
Normalized Restriction (= 0) Value Std. Err.						
-1 + C(2) -0.397748 0.552647						
Restrictions are linear in coefficients.						

Table 14.0: Stock Returns and Expected Inflation

Dependent Variable: Stock Returns Method: Least Squares Sample (adjusted): 1961M03 2013M12 HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 7.0000)						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
C CPI Inflation Forecast	0.117310 -0.355350					
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.004670 0.003095 0.264774 44.30637 -56.09523 2.965461 0.085549 0.454828		ent var riterion erion nn criter. on stat	0.090979 0.265184 0.183266 0.197310 0.188719 0.115283 0.559282		

Table 14.1: Stock Returns, Expected Inflation and Unexpected Inflation

Dependent Variable: Stock Returns Method: Least Squares Sample (adjusted): 1961M03 2013M12 HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 7.0000)						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
C CPI Inflation Forecast Forecast Error	0.117396 -0.353805 -0.698738					
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.005071 0.001918 0.264930 44.28852 -55.96749 1.608142 0.201079 0.719496	Hannan-Qui	ent var criterion erion nn criter. on stat	0.090979 0.265184 0.186017 0.207084 0.194198 0.115490 0.329376		

Dependent Variable: Gold Returns Method: Least Squares Sample (adjusted): 1991M04 2013M12 HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 6.0000)						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
C WPI Inflation Forecast	0.028813 1.006497					
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.047835 0.044322 0.130677 4.627695 169.1966 13.61460 0.000271 0.055338	Mean depend S.D. depende Akaike info ci Schwarz crite Hannan-Quin Durbin-Watso Wald F-statis	ent var riterion erion in criter. on stat	0.093852 0.133672 -1.224884 -1.198441 -1.214269 0.138212 3.703732		

Table 15.1: Gold Returns, Expected Inflation and Unexpected Inflation

Dependent Variable: Gold Returns Method: Least Squares Sample (adjusted): 1991M04 2013M12 HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 6.0000)						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
C WPI Inflation Forecast Forecast Error	0.026659 1.048238 1.674138			0.0477		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.054351 0.047346 0.130470 4.596028 170.1339 7.759069 0.000529 0.074280	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso Wald F-statis	ent var riterion erion in criter. on stat	0.093852 0.133672 -1.224424 -1.184760 -1.208502 0.134565 2.625115		

Wald Test: Equation: Gold Returns						
Test Statistic	Value	df	Probability			
t-statistic F-statistic Chi-square	0.012423 0.000154 0.000154	271 (1, 271) 1	0.9901 0.9901 0.9901			
Null Hypothesis: C(2) = 1 Null Hypothesis Summary:						
Normalized Restriction (= 0) Value Std. Err.						
-1 + C(2) 0.006497 0.522989						
Restrictions are linear in coefficients.						

Table 16.0: Gold as a Hedge Against Expected Inflation

Table 16.1: Gold as a Hedge Against Expected Inflation

Wald Test: Equation: Gold Returns						
Test Statistic	Value	df	Probability			
t-statistic F-statistic Chi-square Null Hypothesis:		270 (1, 270) 1	0.9271 0.9271 0.9271			
Null Hypothesis Summary:						
Normalized Restriction (= 0) Value Std. Err.						
-1 + C(2) Restrictions are I	-1 + C(2) 0.048238 0.526914 Restrictions are linear in coefficients.					

Table 17.0: Silver Returns and Expected Inflation

Dependent Variable: Silver Returns Method: Least Squares Sample (adjusted): 1991M04 2013M12 HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 6.0000)							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
C WPI Inflation Forecast	-0.002176 1.383387	0.039670 0.662171					
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.039769 0.036226 0.197816 10.60459 56.00707 11.22376 0.000922 0.037625	Durbin-Wats	ent var riterion erion nn criter. on stat	0.087217 0.201500 -0.395656 -0.369213 -0.385041 0.152865 4.364624			

Table 17.1: Silver Returns, Expected Inflation and Unexpected Inflation

Dependent Variable: Silver Returns Method: Least Squares Sample (adjusted): 1991M04 2013M12 HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 6.0000)							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
C WPI Inflation Forecast Forecast Error	-0.005299 1.443892 2.426751			0.0349			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)		Hannan-Quir	ent var riterion erion nn criter. on stat	0.087217 0.201500 -0.394624 -0.354960 -0.378702 0.149793 2.736129			

Wald Test: Equation: Silver Returns								
Test Statistic	Value	df	Probability					
t-statistic0.5789852710.5631F-statistic0.335223(1, 271)0.5631Chi-square0.33522310.5626								
Null Hypothesis: C(2) = 1 Null Hypothesis Summary:								
Normalized Restriction (= 0) Value Std. Err.								
-1 + C(2) 0.383387 0.662171								
Restrictions are linear in coefficients.								

Table 18.0: Silver Returns as a Hedge Against Expected Inflation

Table 18.1: Silver Returns as a Hedge Against Expected Inflation

Wald Test: Equation: Silver Returns								
Test Statistic	Value	df	Probability					
t-statistic 0.651638 270 0.5152 F-statistic 0.424632 (1, 270) 0.5152 Chi-square 0.424632 1 0.5146 Null Hypothesis: C(2) = 1 Null Hypothesis Summary: 1 0.5146								
Normalized Restriction (= 0) Value Std. Err.								
-1 + C(2) 0.443892 0.681195								
Restrictions are I	inear in coefficie	Restrictions are linear in coefficients.						

Table 19.0: Stock Returns and Expected Inflation	

Dependent Variable: Stock Returns Method: Least Squares Sample (adjusted): 1961M10 2013M12 HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 7.0000)							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
C WPI Inflation Forecast	0.114539 -0.328237						
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.003829 0.002236 0.266293 44.32004 -59.05322 2.402575 0.121642 0.453276		ent var riterion erion nn criter. on stat	0.091537 0.266591 0.194747 0.208913 0.200251 0.115319 0.563151			

Table 19.1 Stock Returns, Expected Inflation and Unexpected Inflation

Dependent Variable: Stock Returns Method: Least Squares Sample (adjusted): 1961M10 2013M12 HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 7.0000)							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
C WPI Inflation Forecast Forecast Error	0.114596 -0.332746 1.246745	0.033821 0.438286 1.453772	3.388309 -0.759197 0.857593	0.0007 0.4480 0.3914			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.005468 0.002281 0.266287 44.24713 -58.53705 1.715467 0.180727 0.321822		ent var riterion erion nn criter. on stat	0.091537 0.266591 0.196290 0.217539 0.204546 0.118586 1.135820			

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.166	0.166	17.606	0.000
		2	0.083	0.057	22.016	0.000
	1 .	3	0.047	0.025	23.430	0.000
ı İ	1 1	4	0.069	0.054	26.442	0.000
ı D	i u	5	0.043	0.021	27.651	0.000
ı 🖸	l (j)	6	0.086	0.070	32.411	0.000
1	1 1	7	0.103	0.076	39.292	0.000
10	1 1	8	0.060	0.021	41.640	0.000
i (ji	1 1	9	0.052	0.025	43.411	0.000
· 🗖		10	0.122	0.098	52.991	0.000
i ji		11	0.022	-0.028	53.318	0.000
ı 🗓	i)	12	0.081	0.060	57.547	0.000
ւի	i j i	13	0.061	0.023	59.927	0.000
ı 🛛	լյի	14	0.087	0.048	64.814	0.000
ı j i	ili	15	0.023	-0.016	65.145	0.000
ulu -	ı([ı	16	-0.005	-0.040	65.159	0.000
i ()	ı)	17	0.057	0.041	67.307	0.000
ı (i	(1)	18	-0.037	-0.074	68.194	0.000
ı lı		19	0.014	0.004	68.322	0.000
ı D i	I]I	20	0.035	0.011	69.127	0.000
ı <mark>D</mark> i	I]I	21	0.043	0.021	70.327	0.000
I II	ı[ı		-0.006		70.349	0.000
I III	([)	23	-0.016	-0.025	70.511	0.000
i li	I]I	24	0.021	0.012	70.800	0.000
u l i i	10		-0.043		72.049	0.000
1			-0.001	0.007	72.050	0.000
1	I <u>I</u> I		-0.009		72.107	0.000
	10		-0.064		74.858	0.000
1 I	I		-0.000	0.019	74.858	0.000
1 I			-0.006	0.002	74.884	0.000
I I I			-0.019		75.126	0.000
ı l ı	III		-0.037		76.043	0.000
ı 🛛 i	I [I		-0.049		77.622	0.000
I II	ļ (j)	34	0.019	0.037	77.877	0.000
ı 🎚	ן ו	35	0.038	0.065	78.862	0.000
ı lı		36	0.012	-0.001	78.960	0.000

Figure 10: Correlogram of Squared Residuals for SARMA (2, 3) Model of CPI Inflation

Table 20: ARCH LM Test for Sesonal ARMA (2, 3) Model of CPI Inflation

Heteroskedasticity Test: ARCH							
F-statistic	3.170251	Prob. F(12,609)	0.0002				
Obs*R-squared	36.57060	Prob. Chi-Square(12)	0.0003				

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ı 🗊		1	0.115	0.115	8.2875	0.004
		2	0.156	0.145	23.625	0.000
		3	0.169	0.142	41.705	0.000
		4	0.140	0.095	54.028	0.000
	լոր	5	0.090	0.032	59.218	0.000
∥ י∎	լի	6	0.116	0.058	67.768	0.000
	լոր	7	0.098	0.041	73.828	0.000
	լոր	8	0.090	0.035	78.996	0.000
		9	0.141	0.089	91.605	0.000
	' '	10	0.110	0.051	99.357	0.000
	<u> </u>	11	0.100	0.034	105.76	0.000
	'[12	0.143	0.075	118.83	0.000
<u> </u> ' <u>P</u>	'['	13	0.093	0.018	124.37	0.000
	l i 🕅	14	0.122	0.052	133.95	0.000
יי פי	11	15		-0.021	136.21	0.000
		16		-0.006	139.27	0.000
	U '	17		-0.060	139.32	0.000
		18	0.073	0.017	142.75	0.000
		19	0.060	0.017	145.08	0.000
		20	0.089	0.048	150.23	0.000
		21	0.113	0.065	158.62	0.000
		22 23	0.082 0.088	0.020 0.020	162.97 168.01	0.000 0.000
	1 10	23	0.000	0.020	175.99	0.000
		24		-0.002	178.74	0.000
		26	0.005	0.002	187.09	0.000
	,	27		-0.029	188.01	0.000
		28		-0.020	188.06	0.000
	¶.	29		-0.005	189.25	0.000
	1	30	0.1042	0.062	196.45	0.000
		31		-0.026	196.56	0.000
1 1		32		-0.024	197.45	0.000
	լ դր	33	0.107	0.051	204.99	0.000
	ի դի	34		-0.024	205.73	0.000
	i in	35	0.110	0.063	213.76	0.000
i)	ի դի	36	0.064	0.008	216.53	0.000
	1 1					

Figure 11: Correlogram of Squared Residuals for SARMA (2, 2) Model of WPI Inflation

Table 21: ARCH LM Test for Sesonal ARMA (2, 2) Model of WPI Inflation

Heteroskedasticity Tes	st: ARCH		
F-statistic	4.601416	Prob. F(12,602)	0.0000
Obs*R-squared	51.67008	Prob. Chi-Square(12)	0.0000

Table 22: GARCH (1	1)	Model for	CPI	Inflation
Tuble 22. OAROTT	·, ·,	modelioi		madon

Dependent Variable: CPI Inflation Method: ML - ARCH (Marquardt) - Normal distribution Sample (adjusted): 1961M03 2013M12 MA Backcast: 1959M12 1961M02 Presample variance: backcast (parameter = 0.7) GARCH = C(8) + C(9)*RESID(-1)^2 + C(10)*GARCH(-1)					
Variable	Coefficient	Std. Error	z-Statistic	Prob.	
C AR(1) AR(2) MA(1) MA(2) MA(3) SMA(12)	0.075960 1.894947 -0.897493 -0.599009 -0.206611 0.060281 -0.953084	0.002111 0.049957 0.049408 0.074476 0.052243 0.044631 0.008896	-18.16498 -8.042953 -3.954775		
	Variance I	Equation			
C RESID(-1)^2 GARCH(-1)	4.92E-06 0.107319 0.810105	1.38E-06 0.022758 0.038308		0.0004 0.0000 0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.978208 0.978000 0.007665 0.036833 2219.696 1.984517	S.D. dependent var Akaike info criterion Schwarz criterion -6.9706 -6.9706			

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1	i)i	1	0.011	0.011	0.0838	0.772
ı l ı	1	2	-0.015	-0.015	0.2213	0.895
l 1	ի սիս	3	0.015	0.015	0.3680	0.947
	10	4	-0.027	-0.028	0.8465	0.932
ığı	1 1	5	-0.019	-0.018	1.0797	0.956
I I		6	-0.015	-0.016	1.2320	0.975
l i þ	ի դին	7	0.039	0.039	2.1976	0.948
I I I		8	0.004	0.002	2.2070	0.974
	1 1	9	-0.020		2.4597	0.982
l i li	I	10	0.019	0.018	2.7020	0.988
u	1 1		-0.042		3.8328	0.975
		12	0.001	0.005	3.8336	0.986
l ('[!	13	0.025	0.024	4.2556	0.988
l i l i	1 1	14	0.034	0.034	4.9948	0.986
			-0.005		5.0084	0.992
"[<u>'</u>	10		-0.036		5.8477	0.990
l 'P	l i 🔤	17	0.050	0.049	7.4928	0.976
· · · · ·	"['		-0.039		8.4900	0.970
		19	0.010	0.016	8.5557	0.980
		20	0.028	0.020	9.0742	0.982
' ! '	' '	21	0.023	0.025	9.4347	0.985
			-0.002		9.4387	0.991
			-0.026		9.8796	0.992
		24	0.025	0.023	10.288	0.993
			-0.047		11.754	0.988
		26	0.004	0.010	11.764	0.992
			-0.002		11.768 13.364	0.995 0.991
		20	-0.049 0.040			0.991
1 'P'	'P'		-0.030	0.038	14.414 15.013	0.989
			-0.030		15.352	0.990
			-0.022		15.724	0.992
			-0.024		16.919	0.993
		34		-0.039	16.919	0.991
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	35	0.038	0.048	17.972	0.992
'P'	'P'	36	0.037	0.040	18.896	0.992
· · ·	· · · · ·	100	0.007	0.000	10.030	0.332

Figure 12: Correlogram of Standardized Squared Residuals for GARCH (1, 1) Model of CPI Inflation

Table 23: ARCH LM Test for GARCH (1, 1) Model of CPI Inflation

Heteroskedasticity Test: ARCH					
F-statistic	0.306480	Prob. F(12,609)	0.9883		
Obs*R-squared	3.733725	Prob. Chi-Square(12)	0.9878		

Q-statistic probabilities adjusted for 6 ARMA terms						
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
- III			-0.005		0.0171	
		2	0.005	0.005 0.023	0.0355 0.3590	
լ դո	լ լր։ Լ տել	-	-0.042		1.4882	
		5	0.042	0.042	1.6950	
l in		6	0.052	0.052	3.4273	
dí	ի դնո	_	-0.031		4.0603	0.044
ի դի	ի դին	8	0.022	0.019	4.3749	0.112
l ili	1 1	9	0.023	0.022	4.7022	0.195
'Þ	' 	10		0.080	8.2418	0.083
	ի հին	11	0.017		8.4243	0.134
ll ili	1 1		-0.013		8.5257	0.202
	-		-0.019		8.7706	0.270
			-0.045		10.097	0.258
9	<u>¶</u> !		-0.056		12.144	0.205
			-0.012		12.233	0.270
III .d.	 .al.	17	0.028	0.032	12.759	0.309
			-0.026		13.199 13.416	0.355 0.416
	(u) , n ,	20	-0.018 0.032	0.025	14.080	0.416
			-0.032		14.000	0.444
'u'			-0.022		15.624	0.495
l			-0.022		15.948	0.528
			-0.022		18.240	0.320
		25	0.016	0.025	18.418	0.495
ı[ı	l (î	26	0.004	0.000	18.428	0.559
l 1 0	1 10	27	0.046	0.048	19.818	0.533
վո	ի դի		-0.013		19.923	0.588
ի հեր	ի դի	29	0.033	0.035	20.644	0.603
∥ ı l ı	10		-0.016		20.817	0.649
ili		31	-0.007	-0.004	20.849	0.701
վ վ	վե		-0.046		22.255	0.675
l i þi	ի հին	33	0.035	0.037	23.088	0.680
ı lı			-0.001	0.006	23.088	0.729
		35	0.006	0.001	23.112	0.771
l i þi	l illi	36	0.035	0.026	23.931	0.775

Figure 13: Correlogram of Standardized Residuals for GARCH (1, 1) Model of CPI Inflation

Dependent Variable: WPI Inflation Method: ML - ARCH Sample (adjusted): 1961M10 2013M12 MA Backcast: 1960M08 1961M09 Presample variance: backcast (parameter = 0.7) GARCH = C(8) + C(9)*RESID(-1)^2 + C(10)*GARCH(-1)					
Variable	Coefficient	Std. Error	z-Statistic	Prob.	
C AR(1) AR(2) SAR(7) MA(1) MA(2) SMA(12)	0.068098 1.812485 -0.814976 0.066809 -0.548293 -0.144631 -0.878578	0.131740 0.130425 0.043833 0.141799	-6.248606 1.524183 -3.866705	0.0000 0.0000 0.1275 0.0001 0.0247	
	Variance	Equation			
C RESID(-1)^2 GARCH(-1)	1.30E-06 0.081649 0.901956			0.0003	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.970815 0.970533 0.008785 0.047854 2133.664 1.997124	S.D. dependent var Akaike info criterion Schwarz criterion -6.7740 -6.7032			

Table 24: GARCH (1, 1) Model for WPI Inflation

.

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
					-	
ı <mark>l</mark> ı	I I	1	0.027	0.027	0.4660	0.495
III I	1	2	-0.040		1.4980	0.473
ı]ı	1	3	0.008	0.010	1.5399	0.673
111		4	-0.022		1.8373	0.766
		5	-0.006		1.8565	0.869
. I] I 		6	0.011	0.009	1.9294	0.926
		7 8	-0.057 -0.016		3.9957 4.1512	0.780
		9	0.076	0.073	7.8853	0.843
, E		10	-0.012		7.9780	0.631
		11	0.007	0.012	8.0091	0.712
· · ·		12	0.028	0.024	8.5219	0.743
i n		13	0.067	0.071	11.384	0.579
I II		14	0.029	0.024	11.921	0.613
ı 🚺 ı	1		-0.021		12.196	0.664
n i i	j nji		-0.054		14.067	0.594
u l i	1	17	-0.036	-0.032	14.923	0.601
ı l ı	1 10	18	-0.030	-0.036	15.498	0.628
1	()				18.059	0.519
1	1		-0.008		18.096	0.581
i 🛛 i	1	21	0.019	0.016	18.343	0.627
I 🛛 I		22	0.025	0.014	18.745	0.661
		23	0.007		18.778	0.714
I D		24	0.058	0.058	20.990	0.639
		25	0.004	0.002	20.999	0.693
1 D 1		26	0.052	0.050	22.765	0.646
· [] 			-0.004		22.773	0.697
		28 29	-0.065 -0.053		25.569 27.418	0.597
		30	0.021	0.042	27.418	0.548
1 1 1		31	-0.032		28.386	0.601
· • • •			-0.032		28.708	0.634
		33	0.044	0.036	29.979	0.618
		34	-0.005		29.995	0.664
1		35	0.082	0.064	34.498	0.492
	1 1	36		-0.016	34.502	0.540

Figure 14: Correlogram of Standardized Squared Residuals for GARCH (1, 1) Model of WPI Inflation

Table 25: ARCH LM Test for GARCH (1, 1) Model of WPI Inflation

Heteroskedasticity Test: ARCH					
F-statistic		Prob. F(12,602)	0.7844		
Obs*R-squared		Prob. Chi-Square(12)	0.7803		

Q-statistic probabilities adjusted for 6 ARMA terms					
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 -0.021 2 -0.006 3 0.026 4 -0.009 6 0.025 7 0.025 8 -0.055 9 0.019 10 0.059 11 0.016 12 -0.055 13 -0.029 14 -0.026 15 0.028 16 0.015 17 0.022 18 0.023 19 -0.049 21 -0.032 22 0.026 23 -0.020 24 -0.010 25 0.018 26 -0.033 27 -0.026 28 -0.020 29 0.006 30 0.002 31 -0.033	-0.021 -0.007 0.026 -0.003 -0.009 0.024 0.026 -0.054 0.058 0.022 -0.055 -0.037 -0.025 0.033 0.012 0.021 0.021 0.021 0.029 0.001 -0.058 -0.041 0.029 -0.058 -0.041 0.029 -0.007 -0.010 0.009 -0.034 -0.026 -0.030 0.008 0.021	0.2847 0.3087 0.7348 0.7430 0.7990 1.1914 1.5940 3.5424 3.7789 5.9966 6.1654 8.0770 8.6296 9.0493 9.5643 9.7184 10.031 10.359 10.368	0.207 0.170 0.286 0.199 0.290 0.233 0.280 0.338 0.387 0.466 0.528 0.528 0.664 0.610 0.631 0.667 0.713 0.767 0.805 0.813 0.805 0.813 0.805 0.813 0.805 0.813 0.805 0.813 0.805 0.813 0.805 0.813 0.805 0.813 0.805 0.813 0.805 0.813 0.805 0.813 0.805 0.813 0.805 0.813 0.805 0.813 0.805 0.813 0.805 0.813 0.805 0.813 0.805 0.813 0.805 0.919 0.920 0.920 0.939 0.925 0.919 0.920 0.939 0.921 0.919

Figure 15: Correlogram of Standardized Residuals for GARCH (1, 1) Model of WPI Inflation

Dependent Variable: Gold Returns Method: Least Squares Sample (adjusted): 1991M04 2013M12 HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 6.0000)					
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C CPI Inflation Forecast S.D. of CPI Inflation		0.418778	1.823334	0.0694	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.033432 0.026272 0.131905 4.697697 167.1473 4.669458 0.010148 0.190290	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quir Durbin-Wats Wald F-statis	ent var riterion erion nn criter. on stat	0.093852 0.133672 -1.202544 -1.162880 -1.186622 0.137236 1.669444	

Table 26: Gold Returns, Expected Inflation and Inflation Uncertainty

Table 27: Gold as a Hedge Against Expected Inflation

Wald Test: Equation: Gold Returns						
Test Statistic	Value	df	Probability			
t-statistic -0.564563 270 0.5728 F-statistic 0.318732 (1, 270) 0.5728 Chi-square 0.318732 1 0.5724						
Null Hypothesis	Summary:					
Normalized Rest	riction (= 0)	Value	Std. Err.			
-1 + C(2) -0.2364			0.418778			
Restrictions are linear in coefficients.						

Dependent Variable: Silver Returns Method: Least Squares Sample (adjusted): 1991M04 2013M12 HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 6.0000)					
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C CPI Inflation Forecast S.D. of CPI Inflation		0.503909	0.162239	0.8712	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.062702 0.055759 0.195801 10.35132 59.30660 9.031000 0.000160 0.217978	Hannan-Quir	ent var riterion erion nn criter. on stat	0.087217 0.201500 -0.412503 -0.372838 -0.396580 0.163532 1.531989	

Table 28: Silver Returns, Expected Inflation and Inflation Uncertainty

Table 29: Stock Returns, Expected Inflation and Inflation Uncertainty

Dependent Variable: Stock Returns Method: Least Squares Sample (adjusted): 1961M03 2013M12 HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 7.0000)				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C CPI Infaltion Forecast S.D. of CPI Inflation		0.449402	-0.708180	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.015078 0.011956 0.263594 43.84307 -52.76298 4.830007 0.008284 0.348461	S.D. dependent var0.265Akaike info criterion0.175Schwarz criterion0.196Hannan-Quinn criter.0.184Durbin-Watson stat0.120Wald F-statistic1.055		0.090979 0.265184 0.175908 0.196975 0.184089 0.120470 1.055993

Dependent Variable: Gold Returns Method: Least Squares Sample (adjusted): 1991M04 2013M12 HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 6.0000)				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WPI Inflation Forecast S.D. of WPI Inflation		0.622036	1.947185	0.0525
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.093689 0.086976 0.127727 4.404838 175.9337 13.95549 0.000002 0.092810	Mean depen S.D. depend Akaike info o Schwarz crite Hannan-Quir Durbin-Wats Wald F-statis	ent var riterion erion nn criter. on stat	0.093852 0.133672 -1.266913 -1.227249 -1.250991 0.149446 2.398252

Table 30: Gold Returns, Expected Inflation and Inflation Uncertainty

•

Table 31: Gold as a Hedge Against Expected Inflation

Wald Test: Equation: Gold Returns				
Test Statistic	Value	df	Probability	
t-statistic 0.339560 270 0.7345 F-statistic 0.115301 (1, 270) 0.7345 Chi-square 0.115301 1 0.7342 Null Hypothesis: C(2) = 1 Null Hypothesis Summary: 1 0.7342			0.7345	
Normalized Restriction (= 0)		Value	Std. Err.	
-1 + C(2)		0.211218	0.622036	
Restrictions are I	Restrictions are linear in coefficients.			

Dependent Variable: Silver Returns Method: Least Squares Sample (adjusted): 1991M04 2013M12 HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 6.0000)				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WPI Inflation Forecast S.D. of WPI Inflation				0.0135
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.074679 0.067825 0.194546 10.21905 61.06210 10.89532 0.000028 0.018007	S.D. dependent var0.2015Akaike info criterion-0.4253Schwarz criterion-0.3856Hannan-Quinn criter0.4094Durbin-Watson stat0.1602Wald F-statistic4.0773		0.087217 0.201500 -0.425363 -0.385699 -0.409441 0.160294 4.077352

Table 32: Silver Returns, Expected Inflation and Inflation Uncertainty

Table 32: Silver as a Hedge Against Expected Inflation

Wald Test: Equation: Silver Returns				
Test Statistic	Value	df	Probability	
t-statistic	0.987307	270	0.3244	
F-statistic	0.974775	(1, 270)	0.3244	
Chi-square	0.974775 1 0.323		0.3235	
Null Hypothesis: C(2) = 1 Null Hypothesis Summary:				
Normalized Restriction (= 0)		Value	Std. Err.	
-1 + C(2)		0.657920	0.666379	
Restrictions are linear in coefficients.				

Dependent Variable: Stock Returns Method: Least Squares Sample (adjusted): 1961M10 2013M12 HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 7.0000)				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WPI Inflation Forecast S.D. of WPI Inflation		0.422549	-0.141537	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.050897 0.047855 0.260134 42.22598 -43.87938 16.73151 0.000000 0.008229	5S.D. dependent var0.2664Akaike info criterion0.1495Schwarz criterion0.1706Hannan-Quinn criter.0.1570Durbin-Watson stat0.1230Wald F-statistic4.837		0.091537 0.266591 0.149535 0.170784 0.157791 0.123919 4.837250

Table 33: Stock Returns, Expected Inflation and Inflation Uncertainty

Indian Institute of Management Kozhikode

<i>Ref. No.:</i> (to be filled by RCP office)	
IIMK/WPS/164/ECO/2014/22	
GING IN INDIA	
Institution(s)	
Associate Professor Indian Institute of Management Kozhikode, Kozhikode, India. Email: s.dey@iimk.ac.in.	
Subject Classification Codes, if any:	
Research Grant/Project No.(s):	
Date of Issue: (to be filled by RCP office) November 2014	
Number of Pages: 45	

Inflation in India has been moderately high and volatile. In this paper we provide an estimate of the conditional mean and variance of CPI and WPI inflation rates with the help of a GARCH (1, 1) model. Under an environment of inflation uncertainty, rational risk-averse investors demand an inflation risk premium, defined as the difference between the expected real return on a nominal bond and the expected riskless real interest rate (often represented by the expected real return on an inflation-indexed bond). The sign of the inflation risk premium is a function of the inflation-hedging capability of alternative securities, such as gold, silver and stocks. Our estimated empirical models consistently find gold and silver to be effective hedges against expected WPI inflation rate, the predominant measure of Indian inflation. As for Indian equities, we find a strong negative correlation between the nominal returns and the conditional standard deviation of WPI inflation, providing empirical support of a positive inflation risk premium for

Key Words/Phrases:

Indian interest rates.

Referencing Style Followed: APA

Research, Conference And Publication Office Indian Institute Of Management Kozhikode IIMK Campus P.O., Kozhikode 673 570 Kerala, India Telephone +91 495 2809 238 E-mail rcp@iimk.ac.in website www.iimk.ac.in